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Abstract

A unified and versatile LiDAR segmentation model with
strong robustness and generalizability is desirable for safe
autonomous driving perception. This work presents M3Net,
a one-of-a-kind framework for fulfilling multi-task, multi-
dataset, multi-modality LiDAR segmentation in a univer-
sal manner using just a single set of parameters. To better
exploit data volume and diversity, we first combine large-
scale driving datasets acquired by different types of sensors
from diverse scenes and then conduct alignments in three
spaces, namely data, feature, and label spaces, during the
training. As a result, M3Net is capable of taming hetero-
geneous data for training state-of-the-art LiDAR segmenta-
tion models. Extensive experiments on twelve LiDAR seg-
mentation datasets verify our effectiveness. Notably, using
a shared set of parameters, M3Net achieves 75.1%, 83.1%,
and 72.4% mIoU scores, respectively, on the official bench-
marks of SemanticKITTI, nuScenes, and Waymo Open.

1. Introduction
Dense and structural 3D surrounding scene understand-

ing provides crucial information for autonomous vehicles to
make proper decisions [70]. With the recent advancements
in sensing technologies, especially the Light Detection and
Ranging (LiDAR) sensor, a holistic scene perception can be
achieved by segmenting the acquired sensor data [28, 83].

Most existing LiDAR segmentation models [1, 36, 111,
121, 128] are trained and tested in a single-task, single-
dataset, single-modality manner. Despite achieving com-
mendable results in the single domain, there is a signifi-
cant performance drop when transitioning to new domains
[40, 48]. The limited generalization capability hinders their
facilitation of real-world applications [47, 50, 87]. In re-
ality, LiDAR datasets are marred by significant variances,
encompassing variations in data patterns due to different

∗ The first two authors contributed equally to this work.

Figure 1. Performance comparisons among M3Net [•], Single-
Dataset Training [•], and Naı̈ve Joint Training [•] across twelve
LiDAR segmentation datasets. For better comparisons, the radius
is normalized based on M3Net’s scores. The larger the area cover-
age, the higher the overall performance. Best viewed in colors.

sensor types and weather conditions, diverse class distribu-
tions arising from varying capture scenarios, and distinct
label spaces shaped by specific annotation protocols. These
factors collectively pose a formidable challenge in harmo-
nizing disparate LiDAR point clouds and jointly optimiz-
ing model parameters to effectively address multiple tasks
across a range of sensor modalities [89, 118]. Empirical
evidence in Fig. 3 further reveals that naı̈vely combining
heterogeneous data to train a LiDAR segmentation model –
without strategic alignments – often leads to sub-opt results.

Recent works [6, 39, 48, 79, 87, 94, 106] resort to un-
supervised domain adaptation (UDA) for utilizing training
data from both source and target domains to optimize one
parameter set. Nevertheless, they either focus on only the
sharing mapping between two domains (by ignoring dis-
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joint classes) or directly merge source domain labels to
align with the target domain [40, 113]. The overlook of
the performance degradation on the source dataset and the
destruction of original label mappings inevitably constrains
such a learning paradigm. Furthermore, there have been
efforts [85, 96, 104, 118] to employ multi-dataset learning
strategies to bolster the generalization prowess of 3D per-
ception models. However, they either necessitate dataset-
specific fine-tuning, deviating from a truly universal learn-
ing approach, or converge label spaces to a coarser set, re-
sulting in the dilution of fine-grained segmentation capabil-
ities across diverse semantic categories.

In this work, we define a novel paradigm towards lever-
aging LiDAR point clouds from different datasets to tame
a single set of parameters for multi-task LiDAR segmenta-
tion. Sibling to image segmentation communities [43, 53,
124], we call this paradigm universal LiDAR segmenta-
tion. The ultimate goal of such a synergistic way of learning
is to build a powerful segmentation model that can absorb
rich cross-domain knowledge and, in return, achieve strong
resilience and generalizability for practical usage. Given
the substantial differences among datasets in terms of data
characteristics, feature distributions, and labeling conven-
tions, we introduce a comprehensive multi-space alignment
approach that encompasses data-, feature-, and label-level
alignments, to effectively pave the path for efficient and uni-
versally applicable LiDAR segmentation. In particular, the
multi-modal data, including images and texts, is fully ex-
ploited to assist the alignment process with the guidance
of more general knowledge. Through aforementioned pro-
cesses, we propose M3Net to learn common knowledge
across datasets, modalities, and tasks, thereby significantly
enhancing its applicability in practical scenarios.

To substantiate the efficacy of M3Net and the utility of
each module developed, we have carried out a series of thor-
ough comparative and ablation studies across an extensive
array of driving datasets, as shown in Fig. 1. Notably, our
best model achieves state-of-the-art LiDAR segmentation
performance with 75.1%, 83.1%, 72.4% mIoU scores on
SemanticKITTI [3], nuScenes [27], Waymo Open [90], re-
spectively, using a shared set of parameters. Moreover, our
approach also performs well for direct knowledge transfer
and out-of-distribution adaptations, further underscoring its
robust capability for effective knowledge transfer.

2. Related Work
LiDAR Segmentation. A holistic perception of 3D scenes
is crucial for safe autonomous driving [4, 7, 33, 51, 61].
Various LiDAR segmentation models have been proposed,
with distinct focuses on aspects include LiDAR repre-
sentations [20, 74, 91–93, 103, 121, 128], model archi-
tectures [1, 17, 24, 35, 46, 52, 80, 112], sensor fusion
[18, 62, 64, 113, 129], post-processing [111, 123], data aug-

mentations [75, 84, 105], etc. Most recently, researchers
started to explore data efficiency [49, 56], annotation ef-
ficiency [57, 63, 65, 86, 97], annotation-free learning [10,
11, 122], zero-shot learning [12, 69], domain adaptation
[6, 39, 48, 54, 73, 79, 106], and robustness [47] in LiDAR
segmentation, shedding lights for practitioners. Existing
pursues, however, learn separate parameter sets for each
dataset, impeding the scalability. This motivates us to ex-
plore LiDAR segmentation in a multi-task, multi-dataset,
multi-modality manner with just a single set of parameters.

Multi-Task Learning. A proper pipeline design could en-
able the model to generate suitable predictions to fulfill mul-
tiple tasks simultaneously [16, 31]. The current research en-
deavors mainly focus on building image or video segmen-
tation models to handle semantic, instance, and panoptic
segmentation tasks [38, 59, 98, 100, 119, 120, 130]. Re-
cently, several attempts have been made to enable multi-
task segmentation on LiDAR point clouds. MaskRange
[30] and MaskPLS [71] extend the mask classification
paradigm [15] for joint semantic and panoptic LiDAR seg-
mentation. LidarMultiNet [117] uses global context pool-
ing and task-specific heads to handle LiDAR-based detec-
tion and segmentation. P3Former [108] proposed a spe-
cialized positional embedding to handle the geometry am-
biguity in panoptic LiDAR segmentation. Our framework
also supports multi-task learning. Different from existing
approaches, the proposed M3Net stands out by combining
knowledge from different sensor data across multiple data
sources, which achieves superior performance on each task.

Multi-Dataset Learning. Leveraging data samples from
different sources for training has been proven effective in
enhancing robustness and generalizability [72]. Various ap-
proaches have been proposed to merge image datasets for
object detection [14, 58, 60, 99, 125, 126], image segmen-
tation [29, 42, 43, 53, 124], depth estimation [13, 82], etc.
Due to large domain gaps, the image-based methods are of-
ten hard to be transferred to 3D. To combine multiple Li-
DAR datasets for 3D object detection, MDT3D [89] de-
fines a coarse label set to handle the label space conflicts
in different point cloud datasets. MS3D++ [95, 96] ensem-
bles pre-trained detectors from different source datasets for
multi-domain adaptation. Uni3D [118] resorts to dataset-
specific detection heads and feature re-coupling for training
a unified 3D object detector. Recently, PPT [104] proposed
to pre-train a point cloud segmentation network using data
from multiple datasets. However, the pre-trained weights
are then fine-tuned on each specific dataset, which breaks
the universal learning manner. The closest work to us is
COLA [85], which trains a single model across multiple
sources by converting dataset-specific labels to a common
coarse set. Such a conversion, however, leads to the loss of
fine-grained segmentation across the various semantic cate-
gories. Differently, our M3Net is tailored to tame a single
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Figure 2. Statistical analysis of six sharing semantic classes in the nuScenes [•], SemanticKITTI [•], and Waymo Open [•] datasets. Each
violin plot shows the class distribution across LiDAR scenes spanning 50 meters, centered around the ego-vehicle. Best viewed in colors.

parameter set to fulfill multi-task prediction across multiple
datasets while still maintaining the original label mappings.
Multi-Modality Learning. Recent trend favors synergistic
learning from data of different modalities, such as vision,
language, and speech [2, 8, 19, 26, 76, 81, 101]. For LiDAR
segmentation, several works [9, 39, 40, 67, 115] explored
the distillation of image features to point clouds. Recently,
OpenScene [78] and CLIP2Scene [11] proposed to leverage
point clouds along with multi-view images and language
for open-vocabulary learning. PPKT [66], SLidR [86], and
Seal [65] form cross-sensor contrastive learning objectives
to pre-train the LiDAR segmentation models. The advan-
tages of sensor fusion have been consistently proven. In this
work, to pursue universal LiDAR segmentation, we propose
to align multi-space point clouds via images and texts.

3. Approach
Our study serves as an early attempt at combining multi-

task, multi-dataset, multi-modality knowledge into a single
set of parameters to fulfill universal LiDAR segmentation.
We start with a pilot study to unveil the difficulties in merg-
ing heterogeneous LiDAR point clouds (cf . Sec. 3.1). We
then present M3Net, a versatile LiDAR segmentation net-
work tailored to pursue i) statistical consistency in the data
space (cf . Sec. 3.2), ii) cross-modality-assisted alignment
in the feature space (cf . Sec. 3.3), and iii) language-guided
unification in the label space (cf . Sec. 3.4).

3.1. Pilot Study

The current de facto of training a LiDAR segmenta-
tion network adopts a task-by-task and dataset-by-dataset
pipeline. Despite the superior performance achieved under
such standalone settings, the trained parameter sets cannot
be shared to satisfy out-of-domain requirements and, there-
fore, limits their use cases for practical applications.
Naı̈ve Joint Training. A natural alternative to breaking the
above constraint is to jointly train a network across multiple

datasets for better generalizability. However, as depicted in
Fig. 2, it is often non-trivial to naı̈vely combine heteroge-
neous data with large data distribution gaps to train a univer-
sal LiDAR segmentation model without proper alignments.
To testify this, we conducted a pilot study using the prior
art MinkUNet [20] for both standalone and joint training on
three large-scale datasets [3, 27, 90]. As shown in Fig. 3 (a)
and (d), a brutal combination undermines the segmentation
performance. Due to large discrepancies in aspects like sen-
sor configurations, data acquisitions, label mappings, and
domain shifts, the jointly trained representations tend to be
disruptive instead of being more general.
LiDAR Sensor Discrepancy. To understand the root cause
of performance degradation, we conducted another study
that controls point cloud density discrepancies when merg-
ing datasets. As shown in Fig. 3 (b) and (c), joint training on
data collected by sensors with different beam numbers tends
to suffer more severely than merging less density variant
data. We hypothesize that this is mainly caused by the data
statistical variations. In light of these observations, we pro-
pose a bag of suitable operations in the following sections
to alleviate the large domain gaps among different LiDAR
segmentation datasets [3, 4, 7, 27, 90].

3.2. Data-Space Alignment

Given a total of S datasets Ds = {(xs, ys)|1 ≤ s ≤ S},
where (xs, ys) denotes the data-label pairs constituting a
dataset. For the LiDAR segmentation task, xs often en-
compasses the LiDAR point cloud P s = {px, py, pz}s ∈
RN×3 and synchronized multi-view camera images V s =
{I1, ..., Il}|l = 1, ..., L}, where It ∈ RH×W×3, N is the
number of points, L denotes the number of camera sensors,
H and W are the height and width of the image, respec-
tively. ys ∈ RN denotes point cloud labels in the label
space Ys, we unify the label space as Yu = Y1∪Y2...∪YS .
Cross-Modality Data Alignment. As a multi-sensing sys-
tem, the information encoded in P s

i and V s
i are intuitively
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Figure 3. A pilot study of naı̈vely merging different datasets for
training the MinkUNet [20] model. Compared to the standalone
training in (a), either jointly training with (b) the same, (c) differ-
ent, or (d) all sensor-acquired data will cause severe degradation.

complementary to each other [3, 7, 90]. To leverage such
an advantage, we resort to the correspondences embed-
ded in camera calibration matrices to bridge the LiDAR
points and camera image pixels. Specifically, for each point
p = (px, py, pz) in P s, the corresponding pixel (u, v) can
be found by the following transformations:

[u, v, 1]T =
1

pz
· Ts · T · [px, py, 1]T, (1)

where T ∈ R4×4 is the camera extrinsic matrix that consists
of a rotation matrix and a translation matrix, and Ts ∈ R3×4

is the camera intrinsic matrix. As we will show in the fol-
lowing sections, such a cross-sensor data alignment serves
as the foundation for alignments in other spaces.
Cross-Sensor Statistical Alignment. To mitigate the dis-
crepancies in sensor installations across different datasets,
we incorporate a point coordinate alignment operation.
Specifically, drawing upon insights from prior domain
adaptation approaches [102, 116], we adjust the coordinate
origins of point clouds from different datasets by introduc-
ing an offset σ ∈ R1×3 to the ground plane. We find empir-
ically that such an alignment can largely reduce the degra-
dation caused by the variations in different sensor setups.
Dataset-Specific Rasterization. It is conventional to ras-
terize LiDAR point clouds P s using unified rasterization
parameters, e.g., voxel size [91, 128] or horizontal range
view resolution [74, 111]. However, the point clouds ac-
quired in different LiDAR datasets naturally differ in den-
sity, range, intensity, etc., which tends to favor different
rasterization parameters. To meet such a requirement, we
select dataset-specific parameters for rasterization on each
dataset through empirical experiments and analyses.

Decoupled BN. Another challenge in training across mul-
tiple datasets is the presence of domain gaps, which can re-
sult in significant statistical shifts of feature learning among
datasets. Such shifts can hinder the convergence and af-
fect the model’s ability to generalize well across diverse
datasets. We adopt a decoupled batch norm (BN) for point
cloud features in each dataset. Instead of using the tradi-
tional BN, which calculates mean and variance across all
samples in a mini-batch, the decoupled BN tends to adapt
each dataset’s specific characteristics independently.

3.3. Feature-Space Alignment

We aim to acquire a generalized feature representation
for downstream tasks. Compared to point clouds, images
contribute stronger visual, textural, and semantic informa-
tion. Thus, the collaboration between pixels and points
could enrich the overall representation. Previous research
[11, 60, 64] has consistently demonstrated that such a com-
bination results often leads to improved performance.
Cross-Modality Assisted Alignment. In the context of
multi-dataset joint training, our objective is to establish a
unified feature space by leveraging image features to assist
point cloud features. Acknowledging that images used in
training lack ground truth labels [3, 27], we utilize image
features from a pre-trained model as an alternative, facilitat-
ing a more universally applicable representation. We feed
camera images V s into a pre-trained DeepLab [98] and a
vision-language model (VLM) and visualize the output im-
age features by t-SNE [25]. As shown in Fig. 4, we ob-
serve that image features from DeepLab appear disorderly
and lack semantics. In contrast, features from VLM share a
more unified feature space. Motivated by this, we propose
a cross-modality assisted alignment that uses VLM to help
align the feature space. Specifically, the camera images V s

are fed to the frozen image encoder from VLM to obtain im-
age features Fv = {F1

v ,F2
v , ...,Fs

v}, where Fs
v ∈ Rc×h×w.

The LiDAR point clouds P s, on the other hand, are fed to
the point encoder followed by a projection layer to gen-
erate the point features Fp = {F1

p ,F2
p , ...,Fs

p}, where
Fs

p ∈ Rm×c; m denotes the number of non-empty grids.
We then leverage the paired image features F̂v ∈ Rmp×c

and point feature F̂p ∈ Rmp×c for alignment, where mp is
the number of point-pixel pairs. After obtaining F̂p and F̂v ,
the cross-modality alignment is expressed as follows:

Lcma(F̂v, F̂p) = 1− F̂v · F̂p

∥F̂v∥ · ∥F̂p∥
. (2)

Domain-Aware Cross-Modality Alignment. With cross-
modality alignment, we transfer the knowledge of VLM
to the point encoder, enabling the point features to gain
a more comprehensive representation. However, during
the execution of the above alignment, we have narrowed
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Figure 4. The t-SNE plots of learned features before and af-
ter the feature-space alignment in merging the nuScenes [•], Se-
manticKITTI [•], and Waymo Open [•] datasets. We show image
features from (a) standalone networks; (b) SAM [44], and point
cloud features (c) before and (d) after the feature-space alignment.

Figure 5. Feature-space alignment in M3Net. We leverage both
image features Fv and LiDAR point cloud features Fp extracted
from image encoder Eimg and point encoder Epcd to employ the
regularization via V2P loss and achieve feature-space alignment.

it exclusively to image and point features from the same
dataset. In this mode, point features solely learn from
matching image features, restricting their knowledge ac-
quisition. Ideally, we aim to ensure that image features
encompass not only scenes identical to those represented
in point clouds but also scenes from other datasets. To
address this, we propose a domain-aware cross-modality
guided alignment, as illustrated in Fig. 5. Specifically, we
first extract, for each dataset, Fv and Fp from the same im-
age encoder Eimg and point encoder Epcd during the cross-

modality assisted alignment. The sets of features from all
datasets are concatenated along the channel dimension to
form F̃v ∈ Rcv×h×w. Subsequently, we sequentially feed
F̃v through a branch that consists of a global average pool-
ing and an MLP. Simultaneously, F̃v is fed to an auxiliary
branch that undergoes the same processing flow and gener-
ates an output after the softmax function G(·). The outputs
from both branches are multiplied to obtain Fm ∈ Rcv×1×1.
The overall process can be described as follows:

Fm = MLP (Pool(F̃v)) · G(MLP (Pool(F̃v))) . (3)

Next, we forward Fm to a sigmoid activation function H(·)
and multiply it with input image features F̃v . The resulting
output is added to F̃v and passed through the MLP layers
to obtain the final image features Fvf ∈ Rc×h×w. The for-
ward process of this operation is depicted as follows:

Fvf = MLP ((H(Fm) · F̃v) + F̃v) . (4)

Finally, we leverage the cross-modality data alignment to
acquire paired image features F̂vf ∈ Rmp×c and paired
point feature F̂p. The overall objective function is:

Lv2p(F̂vf , F̂p) = 1− F̂vf · F̂p

∥F̂vf∥ · ∥F̂p∥
. (5)

3.4. Label-Space Alignment

Label Conflict. In multi-dataset joint training settings, la-
bel conflicts emerge as a significant challenge. This often
refers to the inconsistencies in class labels across different
datasets involved in the training process. The discrepancy
can arise due to variations in annotation conventions, label-
ing errors, or even differences in the underlying semantics
of classes between datasets. In our baseline, we unionize
the different label spaces across datasets into Yu, where all
datasets share a single LiDAR segmentation head. How-
ever, this may introduce several potential drawbacks:
• Loss of granularity: Unified label spaces could lose se-

mantic granularity, particularly when dealing with subtle
category differences in between different datasets.

• Information loss: During label space consolidation, de-
tails unique to each dataset may be obscured or lost, es-
pecially for those related to domain-specific categories.

• Increased complexity: Handling a unified label space may
necessitate more complex model architectures or training
strategies, thereby increasing overall complexity.
To address these issues, we introduce a language-guided

label-space alignment to facilitate a more holistic seman-
tic correlation across datasets. Given the natural correspon-
dence between images and texts and the strong correlation
between images and point clouds, we aim to strategically
utilize the image modality as a bridge to establish language-
guided alignments. Such a process consists of a text-driven
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Figure 6. Label-space alignment in M3Net. We leverage image
features Fv , point cloud features Fp, and text embedding Ft ex-
tracted from Eimg , Epcd, and Etxt, respectively, for regularization
via the I2P, P2T, and V2T losses in the label-space alignment.

point alignment, a text-driven image alignment, and a cross-
modality-assisted label alignment.
Text-Driven Alignments. As depicted in Fig. 6, images V s

are fed into the frozen image encoder Eimg to extract the
image features Fv . Concurrently, the LiDAR point clouds
P s are processed by the point encoder Epcd to generate the
point features Fp. Additionally, given the text input T s, text
embedding features Ft ∈ RQ×c are obtained from a frozen
text encoder Etxt, where Q represents the number of cate-
gories across datasets. The text is composed of class names
from unified label space Yu placed into pre-defined tem-
plates, and the text embedding captures semantic informa-
tion of the corresponding classes. Subsequently, pixel-text
pairs {vk, tk}Mk=1 and point-text pairs {pk, tk}Mk=1 are gen-
erated, where M represents the number of pairs. Leverag-
ing the semantic information contained in the text, we selec-
tively choose positive and negative samples for both images
and points for contrastive learning. It is noteworthy that
negative samples are confined to the specific dataset cate-
gory space. The overall objective of the text-driven point
alignment function is shown as follows:

Lp2t = −
Q∑

q=1

log(

∑
tk∈q,pk

exp(< tk, pk > /τ)∑
tk∈q,tk /∈q,pj

exp(< tk, pk > /τ)
) ,

(6)
where tk ∈ q indicates that tk is generated by the q-th
classes name, and Q is the number of classes. Symbol <,>
denotes the scalar product operation and τ is a temperature
term (τ > 0). Similarly, the objective of the text-driven
image alignment function is illustrated as follows:

Lv2t = −
Q∑

q=1

log(

∑
tk∈q,vk

exp(< tk, vk > /τ)∑
tk∈q,tk /∈q,vj

exp(< tk, vk > /τ)
) .

(7)

Cross-Modality-Assisted Label Alignment. After text-
driven alignments, the subsequent crucial step entails align-
ing the point and image modalities within the label space.
We first obtain image logits Fvl = {F1

vl,F2
vl, ...,Fs

vl}
and point logits Fpl = {F1

pl,F2
pl, ...,Fs

pl} from text-driven
alignments, where Fs

vl ∈ RQ×H×W , Fs
pl ∈ RN×Q. Sub-

sequently, we conduct cross-modality alignment to obtain
paired image logits F̂vl ∈ Rmp×Q and paired point log-
its F̂pl ∈ Rmp×Q. Formally, the cross-modality-assisted
alignment in the label space is formulated as follows:

Li2p(F̂vl, F̂pl) = 1− F̂vl · F̂pl

∥F̂vl∥ · ∥F̂pl∥
. (8)

Finally, the complete objective function for the language-
guided label-space alignment is expressed as follows:

Llabel = Lp2t + Li2p + Lv2t . (9)

3.5. Universal LiDAR Segmentation

We enhance the versatility of M3Net via multi-tasking
learning. This integration involves an instance extractor to
enable joint semantic and panoptic LiDAR segmentation.
Panoptic LiDAR Segmentation. Motivated by DSNet [32,
33], our instance extractor comprises an instance head and
a clustering step. The instance head encompasses several
MLPs designed to predict the offsets between instance cen-
ters. The clustering step uses semantic predictions to filter
out stuff points, thereby retaining only those associated with
thing points. The remaining points undergo a mean-shift
clustering [21], utilizing features from the instance head to
discern distinct instances. Lastly, we employ the L1 loss
Ll1 to optimize the thing point regression process.
Overall Objectives. Putting everything together, the over-
all objective of M3Net is to minimize the following losses:

L = Lv2p + Llabel + Lce + Llovasz + Ll1 , (10)

where Lce and Llovasz denote the cross-entropy loss and
the Lovasz-softmax [5] loss, respectively.

4. Experiments
4.1. Experimental Setups

Datasets. Our M3Net framework and baselines are trained
on a combination of nuScenes [27], SemanticKITTI [3],
and Waymo Open [90]. Meanwhile, we resort to another
five LiDAR-based perception datasets [41, 45, 77, 106, 107]
and two 3D robustness evaluation datasets [47] to verify the
strong generalizability of M3Net. Due to space limits, ad-
ditional details regarding the datasets are in the Appendix.
Implementation Details. M3Net is implemented based
on Pointcept [23] and MMDetection3D [22]. We use two
backbones in our experiments, i.e., MinkUNet [20] and
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Table 1. Ablation study on the M3Net alignments happen in the Data, Feature, and Label spaces, respectively, when combining the
SemanticKITTI [3], nuScenes [27], and Waymo Open [90] datasets. The mAcc and mIoU scores are in percentage. Best scores are in bold.

- Configurations
MinkUNet [20] PTv2+ [103]

SemKITTI nuScenes Waymo SemKITTI nuScenes Waymo
mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU

Baseline Naı̈ve Joint Training 62.43 54.03 65.05 59.84 73.76 65.39 67.96 61.59 76.53 69.65 75.68 67.00

M3Net
(Ours)

Data Feature Label - - - - - -
✓ 73.82 69.01 83.66 76.89 77.88 69.37 78.55 69.95 86.22 79.13 80.96 72.15
✓ ✓ 74.36 69.64 85.17 78.88 78.31 69.70 79.43 70.87 87.10 80.26 80.74 72.33
✓ ✓ 73.85 69.34 85.20 78.90 78.04 69.55 80.30 71.13 87.44 80.45 80.69 72.30
✓ ✓ ✓ 74.40 69.85 85.30 79.00 78.66 70.15 80.00 72.00 87.91 80.90 81.11 72.40

Table 2. Panoptic LiDAR segmentation results on the val sets of the Panoptic-SemanticKITTI [3] and Panoptic-nuScenes [27] datasets.
All scores are given in percentage. The best and second-best scores are highlighted in bold and underline, respectively.

Method Configurations Panoptic-SemanticKITTI Panoptic-nuScenes
PQ PQ† RQ SQ mIoU PQ PQ† RQ SQ mIoU

Panoptic-TrackNet [37]

Single-Dataset Training

40.0 - 48.3 73.0 53.8 51.4 56.2 63.3 80.2 58.0
Panoptic-PolarNet [127] 59.1 64.1 70.2 78.3 64.5 63.4 67.2 75.3 83.9 66.9

EfficientLPS [88] 59.2 65.1 69.8 75.0 64.9 59.2 62.8 82.9 70.7 69.4
DSNet [32] 61.4 65.2 72.7 79.0 69.6 64.7 67.6 76.1 83.5 76.3

Panoptic-PHNet [55] 61.7 - - - 65.7 74.7 77.7 84.2 88.2 79.7

Baseline Naı̈ve Joint Training 56.03 59.64 65.78 73.72 61.59 56.67 60.61 66.75 83.49 69.65

M3Net
(Ours)

Data Feature Label - -
✓ 62.34 65.17 72.60 74.67 69.95 68.49 71.11 79.13 85.49 79.13
✓ ✓ 62.91 65.73 73.32 75.47 70.87 71.47 73.86 81.53 86.71 80.26
✓ ✓ 63.23 67.89 73.61 81.66 71.13 71.53 73.91 81.80 86.92 80.45
✓ ✓ ✓ 63.87 68.66 73.10 82.35 72.00 71.70 74.01 82.20 86.47 80.90

PTv2+ [103]. We trained M3Net on four A100 GPUs for
50 epochs with a batch size of 6 for each GPU. The initial
learning rate is set to 0.002. We adopt the AdamW opti-
mizer [68] with a weight decay of 0.005 and cosine decay
learning rate scheduler. For the dataset-specific rasteriza-
tion, we set voxel sizes to 0.05m, 0.1m, and 0.05m for Se-
manticKITTI [3], nuScenes [27], and Waymo Open [90], re-
spectively. For the data augmentation, we employ random
flipping, jittering, scaling, rotation, and Mix3D [75]. Due to
space limits, kindly refer to Appendix for additional details.
Evaluation Metrics. We adopt conventional reportings of
mAcc and mIoU for LiDAR semantic segmentation, PQ,
PQ†, SQ, and RQ for panoptic segmentation, and mCE and
mRR for 3D robustness evaluation. Due to the space limit,
kindly refer to our Appendix for more detailed definitions.

4.2. Ablation Study

Multi-Space Alignments. The effectiveness of three pro-
posed alignments over the joint training baselines is shown
in Tab. 1. We observe that the data-space alignment plays
the most crucial role in improving the universal LiDAR seg-
mentation performance. Without proper data alignments,
joint training with either MinkUNet [20] or the stronger
PTv2+ [103] will suffer severe degradation, especially on
sparser point clouds [27]. On top of the data-space align-

ment, the combinations of multi-view images at the feature
space and the language-guided knowledge at the label space
further enhance the learned feature representations. The re-
sults show that they work synergistically in merging knowl-
edge from heterogeneous domains during joint training.
Panoptic LiDAR Segmentation. In Tab. 2, we present an-
other ablation study focusing on panoptic LiDAR segmen-
tation. All three alignments incorporated in M3Net demon-
strate significant improvements over the baselines. This
highlights the pronounced efficacy of our multi-space align-
ments. Moreover, our approach outperforms the single-
dataset state-of-the-art method Panaptic-PHNet [55] by a
notable 2.17% PQ on Panoptic-SemanticKITTI [3] and
achieves compelling results on Panoptic-nuScenes [27].
Visual Feature Alignments. We conduct a qualitative anal-
ysis of the learned visual feature distributions in the form
of t-SNE [25]. Fig. 4 (a) and (b) represent the distribu-
tions of learned visual features among three datasets from
DeepLab and VLM backbones, respectively. The features
obtained by the latter exhibit more distinct semantics in
feature space. The concentrated distribution space is ad-
vantageous for achieving feature alignments across multiple
datasets. Additionally, Fig. 4 (c) and (d) illustrate the distri-
bution of point cloud features before and after feature-space
alignment. As can be seen, the feature distribution distances
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Table 3. Knowledge transfer and generalization analyses across five LiDAR segmentation datasets and two 3D robustness evaluation
datasets. All scores are given in percentage. The best and second-best scores are highlighted in bold and underline, respectively.

Method RELLIS-3D SemanticPOSS SemanticSTF SynLiDAR DAPS-3D SemKITTI-C nuScenes-C
1% 10% Half Full Half Full 1% 10% Half Full mCE mRR mCE mRR

PPKT [66] 49.71 54.33 50.18 56.00 50.92 54.69 37.57 46.48 78.90 84.00 - - 105.64 76.06
SLidR [86] 49.75 54.57 51.56 55.36 52.01 54.35 42.05 47.84 81.00 85.40 - - 106.08 75.99

Seal [65] 51.09 55.03 53.26 56.89 53.46 55.36 43.58 49.26 81.88 85.90 - - 92.63 83.08

Naı̈ve Joint 37.77 50.23 42.19 52.31 46.70 48.00 18.56 42.37 73.91 77.89 113.65 84.73 128.97 81.45
Single-Dataset 40.17 54.25 47.69 55.00 50.33 51.19 23.17 45.08 75.10 80.87 95.11 84.95 99.63 79.06
M3Net (Ours) 51.27 55.05 53.60 57.17 53.78 55.42 44.10 49.93 82.08 86.00 86.43 85.77 91.03 79.15

Table 4. LiDAR semantic segmentation results on the val and
test sets of SemanticKITTI [3] and nuScenes [27], and the val set
of Waymo Open [90]. All scores are in percentage. The best and
second-best scores are highlighted in bold and underline.

Method SemKITTI nuScenes Waymo
Val Test Val Test mIoU mAcc

RangeNet++ [74] - 52.2 - 65.5 - -
PolarNet [121] 57.2 54.3 71.0 69.8 - -
SalsaNext [24] - 59.5 - 72.2 - -
RangeViT [1] 60.7 64.0 75.2 - - -

MinkUNet [20] 63.8 63.7 73.3 - 65.9 76.6
SPVNAS [91] 64.7 66.4 - 77.4 67.4 -
AMVNet [62] 65.2 65.3 77.2 77.3 - -
RPVNet [112] 65.5 70.3 77.6 - - -

(AF)2-S3Net [18] - 69.7 - 78.3 - -
Cylinder3D [128] 65.9 67.8 76.1 77.9 66.0 -

PVKD [34] 66.4 71.2 76.0 - - -
WaffleIron [80] 66.8 70.8 79.1 - - -

RangeFormer [46] 67.6 73.3 78.1 80.1 - -
SphereFormer [52] 67.8 74.8 78.4 81.9 69.9 -

FRNet [114] 68.7 73.3 79.0 82.5 - -
PTv2+ [103] 70.3 70.6 80.2 82.6 70.6 80.2

LidarMultiNet [117] - - - 81.4 73.8 -

M3Net (Ours) 72.0 75.1 80.9 83.1 72.4 81.1

between the three datasets have been largely reduced, pro-
viding evidence of the alignment effectiveness.

4.3. Comparative Study

Comparisons to State of the Arts. In Tab. 4, we compare
M3Net with current best-performing models on the bench-
marks of SemanticKITTI [3], nuScenes [27], and Waymo
Open [90]. Remarkably, M3Net consistently outperforms
existing approaches across all three datasets. Specifically,
on SemanticKITTI [3], M3Net achieves a 72.0% mIoU on
the validation set, surpassing the closest method by a no-
table margin of 1.7% mIoU. Similarly, on nuScenes [27],
M3Net achieves 80.9% mIoU and 83.1% mIoU on the val-
idation and test sets, demonstrating its robustness and gen-
eralization capabilities. Additionally, the performance of
M3Net on Waymo Open [90] is competitive with prior arts.
We achieve a mIoU of 72.4% and a mAcc of 81.1%. These
results highlight again the superiority of M3Net in handling
complex diverse LiDAR segmentation tasks.
Direct Knowledge Transfer. To further validate the strong

knowledge transfer capability of M3Net, we conduct exten-
sive experiments on five different LiDAR-based perception
datasets [41, 45, 77, 106, 107]. These datasets have unique
data collection protocols and data distributions. As shown
in Fig. 1 and the first ten columns in Tab. 3, our framework
constantly outperforms the prior arts, the naı̈ve joint train-
ing, and the single-dataset baselines across all five datasets.
This concretely supports the strong knowledge transfer effi-
cacy brought by multi-space alignments in M3Net.
Out-of-Distribution Generalization. Evaluating the gen-
eralization ability of models on out-of-training-distribution
data is crucial, particularly in safety-critical fields like au-
tonomous driving [50, 109, 110]. In this context, we resort
to the two corruption datasets from the Robo3D [47] bench-
mark, i.e., SemanticKITTI-C and nuScenes-C, to conduct
our assessment. From the last four columns of Tab. 3, we
observe that M3Net achieves better results than the naı̈ve
joint training and other single-dataset approaches, proving
the strong generalizability of the learned representations.

5. Conclusion
In this work, we presented M3Net, a universal frame-

work capable of fulfilling multi-task, multi-dataset, multi-
modality LiDAR segmentation using a single set of param-
eters. Through extensive analyses, we validated the effec-
tiveness of applying data-, feature-, and label-space align-
ments to handle such a challenging task. In addition, our
comprehensive analysis and discourse have delved into the
fundamental challenges of acquiring the general knowledge
for scalable 3D perception, which holds substantial poten-
tial to propel further research in this domain. Our future
strides focus on combining more data resources to further
enhance the alignments and adaptations in our framework.
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