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Unified 3D and 4D Panoptic Segmentation
via Dynamic Shifting Networks

Fangzhou Hong, Lingdong Kong, Hui Zhou, Xinge Zhu, Hongsheng Li, Ziwei Liu�

Abstract—With the rapid advances in autonomous driving, it becomes critical to equip its sensing system with more holistic 3D
perception. However, widely explored tasks like 3D detection or point cloud semantic segmentation focus on parsing either the objects
(e.g. cars and pedestrians) or scenes (e.g. trees and buildings). In this work, we propose to address the challenging task of
LiDAR-based Panoptic Segmentation, which aims to parse both objects and scenes in a unified manner. In particular, we propose
Dynamic Shifting Network (DS-Net), which serves as an effective panoptic segmentation framework in the point cloud realm. DS-Net
features a dynamic shifting module for complex LiDAR point cloud distributions. We observe that commonly used clustering algorithms
like BFS or DBSCAN are incapable of handling complex autonomous driving scenes with non-uniform point cloud distributions and
varying instance sizes. Thus, we present an efficient learnable clustering module, dynamic shifting, which adapts kernel functions on
the fly for different instances. To further explore the temporal information, we extend the single-scan processing framework to its
temporal version, namely 4D-DS-Net, for the task of 4D Panoptic Segmentation, where the same instance across multiple frames
should be given the same ID prediction. Instead of naı̈vely appending a tracking module to DS-Net, we propose to solve the 4D
panoptic segmentation in a more unified way. Specifically, 4D-DS-Net first constructs 4D data volume by aligning consecutive LiDAR
scans, upon which the temporally unified instance clustering is performed to obtain the final results. Extensive experiments on two
large-scale autonomous driving LiDAR datasets, SemanticKITTI and Panoptic nuScenes, are conducted to demonstrate the
effectiveness and superior performance of the proposed solution. The code is publicly available at https://github.com/hongfz16/DS-Net.

Index Terms—LiDAR Panoptic Segmentation, Point Cloud Semantic & Instance Segmentation, 4D Panoptic Segmentation.

✦

1 INTRODUCTION

AUTONOMOUS driving, one of the most promising ap-
plications of computer vision, has achieved rapid

progress in recent years. The perception system, one of
the most important modules in autonomous driving, has
also attracted extensive studies in previous research works.
Admittedly, the classic tasks of 3D object detection [1],
[2], [3] and semantic segmentation [4], [5], [6], [7], [8]
have developed mature solutions that support real-world
autonomous driving prototypes. However, there still exists
a considerable gap between these tasks and the goal of
holistic perception which is essential for the challenging
autonomous driving scenes. In this work, we propose to
close the gap by exploring the task of LiDAR-based 3D and
4D panoptic segmentation, which requires dense point-level
predictions in the spatial-temporal domain.

Panoptic segmentation for images [9] and videos [10]
have been proposed as new vision tasks that unify semantic
and instance segmentation. Behley et al. [11] extend the task
to LiDAR point clouds and propose the task of LiDAR-
based panoptic segmentation. Its temporal counterpart is
also introduced as 4D panoptic segmentation [12] for more
coherent perception in the temporal perspective. As shown
in Fig. 1 (a), LiDAR-based panoptic segmentation requires
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to predict point-level semantic labels for background (stuff )
classes (e.g. road, building, and vegetation), while instance
segmentation needs to be performed for the foreground
(things) classes (e.g. car, person and cyclist). The 4D panop-
tic segmentation further requires the same instance across
different frames should be assigned with the same ID. Both
tasks pose challenges from spatial and temporal perspec-
tives, which are discussed as follows.

From the spatial perspective, complex point distribu-
tions of LiDAR scans make it difficult to perform reliable
panoptic segmentation. Most existing point cloud instance
segmentation methods [13], [14] are mainly designed for
dense and uniform indoor point clouds. Therefore, decent
segmentation results can be achieved through the center
regression and heuristic clustering algorithms. However,
due to the non-uniform density of LiDAR point clouds
and varying sizes of instances, the center regression fails
to provide ideal point distributions for clustering. The re-
gressed centers usually form noisy strip distributions that
vary in density and size. As will be analyzed in Sec. 3.2,
several heuristic clustering algorithms widely used in pre-
vious works cannot provide satisfactory clustering results
for the regressed centers of LiDAR point clouds. To tackle
the above-mentioned technical challenges, we propose Dy-
namic Shifting Network (DS-Net) which is specifically de-
signed for effective panoptic segmentation of LiDAR point
clouds.

Firstly, we adopt a strong backbone design and provide
a strong baseline for the new task. Inspired by [15], the
cylinder convolution is used to efficiently extract grid-level
features for each LiDAR frame in one pass which are further
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Fig. 1: As shown in (a), LiDAR-based panoptic segmentation requires instance-level segmentation for things classes and
semantic-level segmentation for stuff classes. (b) shows the core operation of the proposed dynamic shifting where several
shift candidates are weighted to obtain the optimal shift target for each regressed center.

shared by the semantic and instance branches.
Secondly, we present to regress the instance center for

each point in the instance branch. Then we design a novel
Dynamic Shifting Module to cluster on the regressed cen-
ters, which normally have complex distributions. As illus-
trated in Fig. 1 (b), the proposed dynamic shifting module
shifts the regressed centers pi to the cluster centers xi. The
cluster centers xi are adaptively computed by weighting
across several neighboring points cij which are calculated
through kernel functions kj . The special design of the mod-
ule makes the shift operation capable of dynamically adapt-
ing to the density or sizes of different instances and therefore
shows superior performance on LiDAR point clouds. Fur-
ther analysis also shows that the dynamic shifting module
is robust and not sensitive to parameter settings.

From the temporal perspective, it is not trivial to ef-
fectively associate instances across frames, especially when
they are moving and partially observed [16]. Sparse LiDAR
point clouds give very few clues about their appearance,
which makes it hard to distinguish them from each other.
Therefore, it is sub-optimal to perform tracking based on
multiple single-scan segmentation results, as proved in
Sec. 4.4. Instead, we propose to deal with the 4D panoptic
segmentation in a more unified way such that information
from consecutive frames is fully utilized and associated
implicitly.

Similar to 4D-PLS [12], we take poses estimated from the
SLAM system to align and overlap consecutive LiDAR scans
to form 4D data volumes. Then the temporally unified in-
stance clustering is designed to perform instance segmenta-
tion in a frame-agnostic way, the results of which are further
fused with the semantic segmentation to form the final 4D
panoptic segmentation results. Such unified segmentation
on the 4D data volume avoids the need for complicated
post-tracking modules. In the meantime, the information
extraction process is fully spatial-temporal-aware, making
it more effective than “segment-then-track” approaches.

Extensive experiments on two large-scale autonomous
driving datasets, SemanticKITTI [17] and Panoptic nuScenes
[18], [19], demonstrate the effectiveness of our proposed DS-
Net and 4D-DS-Net on LiDAR-based 3D and 4D panoptic
segmentation. To further show the challenges of these tasks,
we also present several strong baseline results by combining

state-of-the-art semantic segmentation, detection, and track-
ing methods. Both DS-Net and 4D-DS-Net present compet-
itive results on all testing benchmarks. More analyses are
also conducted to provide more in-depth insights into the
dynamic shifting module.

The main contributions are summarized below:
• The proposed DS-Net effectively handles the complex

distributions of LiDAR point clouds and achieves com-
petitive performance on the large-scale SemanticKITTI
and Panoptic nuScenes datasets.

• We show a simple but effective solution to 4D panoptic
segmentation by proposing 4D-DS-Net. Together with
DS-Net, we formulate a unified 3D and 4D panoptic
segmentation framework.

• Extensive experiments are performed to demonstrate
effectiveness. Further statistical analyses are carried out
to provide valuable observations.

2 RELATED WORK

Image Panoptic Segmentation. The challenging vision task
of panoptic segmentation was firstly defined by [9] where
semantic segmentation for stuff classes [20] and instance
segmentation for things classes are evaluated under unified
metrics. From the perspective of network architecture, most
panoptic segmentation methods can be categorized into top-
down style and bottom-up style. The top-down methods are
mostly based on MaskRCNN [21] where the instances are
firstly detected and then segmented by predicting masks.
The main innovations of this kind of method lie in the
following two aspects. The first one [22], [23], [24], [25] is
the backbone where semantic and instance information is
extracted and shared. Panoptic FPN [22] and Seamless Scene
Segmentation [23] manage to share MaskRCNN Feature
Pyramid Network (FPN) between semantic and instance
branches which yield a solid and strong baseline for the
emerging task. The second aspect [22], [26], [27], [28] is
the handling of disagreement between semantic and in-
stance segmentation predictions and conflicts between mul-
tiple instance segmentation predictions. UPSNet [29] and
Li et al. [30] try to unify things and stuff segmentation by
introducing panoptic logits which can generate coherent
panoptic segmentation results without any post-processing.
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The bottom-up approaches [31], [32], [33] typically perform
semantic segmentation first, then perform pixel clustering
based on the semantic predictions, which naturally saves
the trouble of conflict handling and would lead to lighter
network design. Although top-down approaches tend to
outperform bottom-up approaches due to the use of the
powerful MaskRCNN, recent work of Panoptic-DeepLab
[32] presents a bottom-up baseline that has comparable
performance with top-down methods. For the simplicity of
the network design, we choose to use a bottom-up approach
in the proposed DS-Net.
Video Panoptic Segmentation. With the development of
single-frame panoptic segmentation, recent research has
extended the task to video inputs. Video panoptic seg-
mentation requires the consistency of things IDs across
frames [10], [34], [35], [36]. [10] constructs the method based
on UPSNet [29]. Consequently, two frames are fused using
spatial-temporal attention. Finally, object-level tracking is
performed for consistent things IDs. Differently, [37] adopts
a bottom-up backbone. Center regression is performed for
two consequent frames with the centers predicted from
the first frame, which would naturally produce consistent
things IDs.
Point Cloud Semantic Segmentation. According to the data
representations of point clouds, most point cloud semantic
segmentation methods can be categorized into point-based
and voxel-based methods. Based on PointNet-like back-
bones [38], [39], [40], KPConv [41], DGCNN [42], PointConv
[43], Randla-Net [44], Pointasnl [45] can directly operate on
unordered point clouds. However, due to space and time
complexity, most point-based methods struggle on large-
scale point clouds datasets, e.g., ScanNet [46], S3DIS [47],
and SemanticKITTI [17]. MinkowskiNet [48] and (AF)2-
S3Net [49] utilize the sparse convolutions to efficiently
perform semantic segmentation on the voxelized large-scale
point clouds. SqueezeSeg [5], [50], [51], [52], [53] views
LiDAR point clouds as range images while PolarNet [6] and
Cylinder3D [15], [54], [55] divide the LiDAR point clouds
under the polar and cylindrical coordinate systems. Some
works [56], [57], [58], [59] combine the advantages of point-
based and voxel-based models to improve the semantic
segmentation scores. Most recently, there are works that
start to probe the data efficiency [60], generalizability [61],
[62], and robustness [63], [64], [65], [66], [67] of this point
cloud scene understanding task.
Point Cloud Instance Segmentation. Previous works have
shown great progress in the instance segmentation of indoor
point clouds. A large number of point-based methods (e.g.
SGPN [68], ASIS [69], JSIS3D [70] and JSNet [71]) split
the whole scene into small blocks and learn point-wise
embeddings for final clustering, which are limited by the
heuristic post-processing steps and the lack of perception. To
avoid the problems, recent works (e.g. PointGroup [14], 3D-
MPA [13], OccuSeg [72]) use sparse convolutions to extract
features of the whole scene in one pass. As for LiDAR point
clouds, there are a few previous works [5], [44], [73], [74]
trying to tackle the problem.
Point Cloud Panoptic Segmentation. Recently, many at-
tempts have been made in point cloud panoptic segmen-
tation. We categorize all LiDAR-based panoptic segmen-
tation methods in Tab. 1. [11] first formally defines the

TABLE 1: Categorization of LiDAR-based panoptic segmen-
tation methods.

Seg Style Backbone References

Bottom-Up

Point-Based [41] [12], [75], [76]
Range View [5] [77], [78], [79], [80]
BEV [6] [81], [82], [83]
Cylinder [54] [84], [85], [86], [87]
Voxel [48] [88]
Hybrid [89], [90]

Top-Down Range View [5] [79]
Voxel [48] [91], [92]

task of LiDAR-based panoptic segmentation and proposes
to combine semantic segmentation and 3D object detection
to obtain the panoptic segmentation results. Most works
can be categorized by the 3D representations (e.g. Point
Cloud [41], Range View [5], BEV [1], [6], Cylinder3D [54],
Voxels [48]) and segmentation styles (e.g. bottom-up and
top-down). Utilizing strong point-based encoder-decoder
structures (e.g. KPConv [41]), [12], [75], [76] performs panop-
tic segmentation directly on point clouds. [77], [78], [79],
[80] perform spherical projection on LiDAR point clouds to
form range views [5] and utilize 2D panoptic segmentation
methods. [81], [82], [83] utilize the Polar BEV encoder [6] to
extract per-point features. To further explore the contexts in
3D, many works [84], [85], [86], [87] use Cylinder3D [54] as
the basic building block to extract per-point features. Some
[88], [89], [90], [91], [92] also perform sparse convolution on
Cartesian-partitioned voxels [48], [49] to extract point cloud
features for panoptic segmentation. Panoptic-PHNet [89]
and GP-S3Net [90] use hybrid backbones to achieve state-
of-the-art performance. Currently, most panoptic segmen-
tation methods perform instance clustering in a bottom-up
way. Some also explore the top-down style [79], [91], [92],
which tends to have higher performance as shown in 2D
counterparts.
4D Panoptic Segmentation. 4D-PLS [12] extends the single
frame LiDAR-based panoptic segmentation to the 4D ver-
sion by constructing 4D volumes, upon which clustering-
based instance segmentation is performed. Specifically, they
start by selecting the point with the highest objectness score
and assign points to this instance by evaluating association
probabilities. 4D-StOP [76] adopts a similar strategy as 4D-
PLS [12] by first constructing 4D volumes, then performing
instance clustering. They use a different clustering method,
where they perform DBSCAN clustering on learned geom-
etry features. Marcuzzi et al. [86] use contrastive instance
association on top of the single-frame panoptic segmenta-
tion framework to achieve temporally consistent instance
ID assignment. Wang et al. [83] build their method based
on efficient polar BEV to achieve real-time 4D panoptic
segmentation. Our proposed 4D panoptic LiDAR segmen-
tation method firstly constructs 4D volumes similarly to 4D-
PLS [12] and 4D-StOP [76]. Different from their clustering
strategies, we perform dynamic shifting on the 4D feature
volumes to obtain temporally consistent thing IDs.

3 OUR APPROACH

We structure this section into two parts, one for the single-
scan version DS-Net, based on which its 4D counterpart
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Fig. 2: Architecture of DS-Net. The DS-Net consists of the cylinder convolution, a semantic, and an instance branch as
shown in the upper part of the figure. The regressed centers provided by the instance branch are clustered by the novel
dynamic shifting module, which is shown in the bottom half. The majority voting module unifies the semantic and instance
results into the final panoptic segmentation results.

4D-DS-Net is further introduced. For the DS-Net part, as
illustrated in Fig. 2, we first introduce a strong backbone to
establish a simple baseline (Sec. 3.1), based on which two
modules are further proposed. The novel dynamic shifting
module is presented to tackle the challenge of the non-
uniform LiDAR point cloud distributions (Sec. 3.2). The
efficient majority voting strategy combines the semantic and
instance predictions and produces panoptic segmentation
results (Sec. 3.3). For the second part, we introduce a simple
yet effective extension, namely 4D-DS-Net, to the task of 4D
panoptic LiDAR segmentation (Sec. 3.4).

3.1 Strong Backbone Design
To obtain panoptic segmentation results, it is natural to solve
two sub-tasks separately, which are semantic and instance
segmentation, and combine the results. As shown in the up-
per part of Fig. 2, the strong backbone consists of three parts:
the cylinder convolution, a semantic branch, and an instance
branch. High-quality grid-level features are extracted by the
cylinder convolution from raw LiDAR point clouds and
then shared by semantic and instance branches.
Cylinder Convolution. Considering the difficulty presented
by the task, we find that the cylinder convolution [15]
best meets the strict requirements of high efficiency, high
performance, and full mining of 3D positional relationships.
The cylindrical voxel partition can produce a more even
point distribution than the normal Cartesian voxel partition
and therefore leads to higher feature extraction efficiency
and higher performance. Cylindrical voxel representation
combined with sparse convolutions can naturally retain
and fully explore 3D positional relationships. Specifically,
we use the sparse convolution to construct a U-Net [93]

that operates on cylindrical voxels. The input LiDAR point
clouds P ∈ RN×4 consists of N points and each point
pi has four attributes representing its XYZ coordinates
(xi, yi, zi) and the intensity of the corresponding reflection
beams ri. The output of the backbone is the voxel features
Fv ∈ RH×W×L×D , where D represents the dimension of
the features. H,W,L are voxel resolutions and take values
of 480, 360, 32 in practice.
Semantic Branch. By applying convolution to the voxel
feature from the backbone Fv , semantic logits Ls ∈
RH×W×L×C , where C is the number of all classes and
H,W,L represent voxel dimensions, are predicted for each
voxel, which is then followed by a softmax operation to
compute the predicted semantic label for each voxel. Point-
level semantic predictions are obtained by copying voxel
labels to the points inside the voxels. Considering the cate-
gory imbalance in the autonomous driving scene, we choose
the weighted cross-entropy loss and Lovasz loss [94] as the
loss function for the semantic segmentation branch.
Instance Branch. The instance branch utilizes center re-
gression to prepare the things points for further clustering.
The center regression module uses MLP to adapt cylinder
convolution features and make things points to regress the
centers of their instances by predicting the offset vectors
O ∈ RM×3 pointing from the points P ∈ RM×3 to the
instance centers Cgt ∈ RM×3, where M represents number
of things points predicted by semantic segmentation. The
loss function for instance branch can be formulated as:

Lins =
1

M

M∑
i=0

∥O[i]− (Cgt[i]− P [i])∥1, (1)

where M is the number of things points. The regressed
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Fig. 3: (a) counts the average number of regressed centers
inside each valid voxel of instances at different distances.
(b) shows the effect of Different Mean Shift Bandwidth on
the Recognition Quality of Different Classes.

centers O + P are further clustered to obtain different
instances, and then the instance IDs are assigned to them.
It can be achieved by either heuristic clustering algorithms
or the proposed dynamic shifting module which are further
introduced and analyzed in the following section.

3.2 Dynamic Shifting
Point Clustering Revisit. Unlike indoor point clouds which
are sampled from reconstructed meshes, the LiDAR point
clouds have distributions that are not suitable for normal
clustering solutions used by indoor instance segmentation
methods. The varying instance sizes, the sparsity, and the
incompleteness of LiDAR point clouds make it difficult for
the center regression module to predict the precise center
location and would result in noisy long “strips-like” distri-
bution as shown in Fig. 1 (b) instead of an ideal ball-shaped
cluster around the center. Moreover, as presented in Fig. 3
(a), the clusters formed by regressed centers that are far from
the LiDAR sensor have much lower densities than those of
nearby clusters because the point cloud sparsity depends on
the distance to the sensors. Facing the non-uniform distri-
bution of regressed centers, heuristic clustering algorithms
struggle to produce satisfactory results. Four major heuristic
clustering algorithms that are used in previous bottom-
up indoor point cloud instance segmentation methods are
analyzed below.

• Breadth First Search (BFS). BFS is simple and good
enough for indoor point clouds as proved in [14], but
not suitable for LiDAR point clouds. As discussed
above, a large density difference between clusters
means that the fixed radius cannot properly adapt to
different clusters. A small radius tends to over-segment
distant instances while a large radius tends to under-
segment near instances.

• DBSCAN [95] and HDBSCAN [96]. As density-based
clustering algorithms, there is no surprise that these
two algorithms also perform badly on the LiDAR point
clouds, even though they are proven to be effective
for clustering indoor point clouds [13], [97]. The core
operation of DBSCAN is the same as that of BFS. While
HDBSCAN intuitively assumes that the points with
lower density are more likely to be noise points which
is not the case with LiDAR points.

• Mean Shift [98]. The advantage of Mean Shift, which
is used by [99] to cluster indoor point clouds, is that
the kernel function is not sensitive to density changes
and robust to noise points which makes it more suitable
than density-based algorithms. However, the bandwidth
of the kernel function has a great impact on the cluster-
ing results as shown in Fig. 3 (b). The fixed bandwidth
cannot handle the situation of large and small instances
simultaneously which makes Mean Shift not the ideal
choice for this task.

Dynamic Shifting. As discussed above, it is a robust way of
estimating cluster centers of regressed centers by iteratively
applying kernel functions as in Mean Shift. However, the
fixed bandwidth of kernel functions fails to adapt to varying
instance sizes. Therefore, we propose the dynamic shifting
module which can automatically adapt the kernel function
for each LiDAR point in the complex autonomous driving
scene so that the regressed centers can be dynamically,
efficiently, and precisely shifted to the correct cluster centers.

In order to make the kernel function learnable, we first
consider how to mathematically define a differentiable shift
operation. Inspired by [100], the shift operation on the
seeding points (i.e. points to be clustered) can be expressed
as matrix operations if the number of iterations is fixed.
Specifically, one iteration of shift operation can be formu-
lated as follows. Denoting X ∈ RM×3 as the M seeding
points, X will be updated once by the shift vector S ∈ RM×3

which is formulated as:

X ← X + ηS, (2)

where η is a scaling factor which is set to 1 in our ex-
periments. The calculation of the shift vector S is by ap-
plying kernel function f on X , and formally defined as
S = f(X)−X .

Among various kinds of kernel functions, the flat kernel
is simple but effective for generating shift target estimations
for LiDAR points, which is introduced as follows. The
process of applying a flat kernel can be thought of as placing
a query ball of a certain radius (i.e. bandwidth) centered at
each seeding point and the result of the flat kernel is the
mass of the points inside the query ball. Mathematically,
the flat kernel f(X) = D−1KX is defined by the kernel
matrix K = (XXT ≤ δ), which masks out the points
within a certain bandwidth δ for each seeding point, and the
diagonal matrix D = diag(K1) that represents the number
of points within the seeding point’s bandwidth.

With a differentiable version of the shift operation de-
fined, we proceed to our goal of dynamic shifting by adapt-
ing the kernel function for each point. The optimal band-
width for each seeding point has to be inferred dynamically,
in order for the kernel function to be adapted to instances
with different sizes. A natural solution is to directly regress
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Algorithm 1: Forward Pass of the Dynamic Shifting
Module

Input: Things Points P ∈ RM×3, Things Features
F ∈ RM×D′

, Things Regressed Centers
C ∈ RM×3, Fixed number of iteration I ∈ N,
Bandwidth candidates list L ∈ Rl

Output: Instance IDs of things points R ∈ RM×1

1 mask = FPS(P ), P ′ = P [mask]
2 X = C[mask], F ′ = F [mask]
3 for i← 1 to I do
4 Wi = Softmax(MLP (F ′))
5 acc = zeros like(X)
6 for j ← 1 to l do
7 Kij = (XXT ≤ L[j])
8 Dij = diag(Kij1)
9 acc = acc+Wi[:, j]⊙ (D−1

ij KijX)
10 end
11 X = acc
12 end
13 R′ = cluster(X)
14 index = nearest neighbour(P, P ′)
15 R = R′[index]
16 return R

bandwidth for each seeding point, which however is not
differentiable if used with the flat kernel. Even though
the Gaussian kernel can make direct bandwidth regression
trainable, it is still not the best solution as analyzed in
section 4.1. Therefore, we apply the design of weighting
across several bandwidth candidates to dynamically adapt
to the optimal one.

One iteration of dynamic shifting is formally defined as
follows. As shown in the bottom half of Fig. 2, l bandwidth
candidates L = {δ1, δ2, ..., δl} are set. For each seeding
point, l shift target candidates are calculated by l flat kernels
with corresponding bandwidth candidates. Seeding points
then dynamically decide the final shift targets, which are
ideally the closest to the cluster centers, by learning the
weights W ∈ RM×l to weight on l candidate targets. The
weights W are learned by applying MLP and Softmax on
the backbone features so that

∑l
j=1 W [:, j] = 1. The above

procedure and the new learnable kernel function f̂ can be
formulated as follows:

f̂(X) =
l∑

j=1

W [:, j]⊙ (D−1
j KjX), (3)

where Kj = (XXT ≤ δj) and Dj = diag(Kj1).
With the one iteration of dynamic shifting stated clearly,

the full pipeline of the dynamic shifting module, which
is formally defined in algorithm 1, can be illustrated as
follows. Firstly, to maintain the efficiency of the algorithm,
farthest point sampling (FPS) is performed on M things
points to provide M ′ seeding points for the dynamic shift-
ing iterations (Lines 1–2). After a fixed number I of dynamic
shifting iterations (Lines 3–12), all seeding points have been
gathered to the cluster centers. A simple heuristic clustering
algorithm is performed to cluster the gathered seeding
points to obtain instance IDs for each seeding point (Line

13). Finally, all other things points find the nearest seeding
points, and the corresponding instance IDs are assigned to
them (Lines 14–15).

The optimization of the dynamic shifting module is not
intuitive since it is impractical to obtain the ground truth
bandwidth for each seeding point. The loss function has
to encourage seeding points to shift toward their cluster
centers that have no ground truths but can be approximated
by the ground truth centers of instances C ′

gt ∈ RM ′×3.
Therefore, the loss function for the i-th iteration of dynamic
shifting is defined by the Manhattan distance between the
ground truth centers C ′

gt and the i-th dynamically calcu-
lated shift targets Xi, which can be formulated as follows:

li =
1

M ′

M ′∑
x=1

∥Xi[x]− C ′
gt[x]∥1. (4)

Adding up all the losses of I iterations gives us the
loss function Lds for the dynamic shifting module: Lds =∑I

i=1 wili, where wi are weights for losses of different
iterations and are all set to 1 in our experiments.

3.3 Fusion of Semantic and Instance Segmentation
Typically, solving the conflict between semantic and in-
stance predictions is one of the essential steps in panoptic
segmentation. The advantages of bottom-up methods are
that all points with predicted instance IDs must be in
things classes and one point will not be assigned to two
instances. The only conflict that needs to be solved is the
disagreement of semantic predictions inside one instance,
which is brought in by the class-agnostic way of instance
segmentation. The strategy used is majority voting. For each
proposed instance, we directly assign the most frequent
semantic label inside to all the points of this instance to
ensure the agreement between semantic and instance seg-
mentation results. This simple fusion strategy is not only
efficient but could also revise and unify semantic predictions
using instance information.

3.4 4D Panoptic LiDAR Segmentation
Based on the above proposed single version of the LiDAR-
based panoptic segmentation method DS-Net, we further
extend it to the task of 4D panoptic LiDAR segmentation.

To extend from single-frame panoptic segmentation to its
4D counterpart, the things IDs need to be consistent across
frames. In other words, for the same instance observed in
multiple frames, the target is to assign the same IDs for
them. The trivial way is to append a tracking module to
the instance segmentation branch to associate the predicted
instance segments from previous and current frames. How-
ever, such naı̈ve stacking of modules will inevitably lead
to the compromised performance of tracking due to its
dependence on the segmentation quality. Moreover, for the
tracking module, it is hard to fully utilize the information
provided by the consecutive LiDAR scans since it only
processes the cropped partial observations. It is challenging
for the tracking module to extract distinctive features from
incomplete, sparse point clouds. To fully utilize the temporal
information from consecutive LiDAR scans, following 4D-
PLS [12], we propose to perform instance clustering in a
temporally unified way, which is illustrated below.
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Fig. 4: Architecture of the 4D version DS-Net (namely 4D-DS-Net). The 4D-DS-Net takes the aligned and overlapped
LiDAR scans as input. Then perform unified instance clustering to generate temporally consistent things IDs. Finally, the
overlapped panoptic segmentation results are separated according to the original temporal masks.

Temporally Unified Instance Clustering. To ensure the con-
sistency of the things IDs, we propose to use the temporally
unified instance clustering to replace the explicit association.
The target of such a clustering strategy is to jointly cluster
all the points of the same instance from several frames to a
single cluster. Then we could naturally separate these points
into different frames and assign them to the same instance
ID. To fit such a clustering strategy into the bottom-up
pipeline, we need to modify the targets of the center regres-
sion step and the following clustering module. In the single-
frame version of the pipeline, the point-level features are
used to regress the center of the instances. However, in the
multi-frame scenario, positions of instances, e.g., cars and
pedestrians, would change across frames. Therefore, if we
still follow the center regression target of the single frame
version, there is a great possibility of the same instance
being clustered into multiple clusters because the regressed
centers are too far apart due to high moving speed. To avoid
such a problem, for the same instance, we propose to regress
to the center of the overlapped point clouds from multiple
frames, which can be formulated as:

Cgt(pid) = center({p|p ∈ gtt(id) . . . gtt+i(id)}), (5)

where pid is the point that has the things ID of id, gtt+i(id)
represents the set of points that have the things ID of id
and in frame t + i. After the adjusted center regression, the
following clustering step is performed on the overlapped
regressed centers. Unlike the 4D Volume Clustering pro-
posed by [12], our clustering process does not take the frame
timestamp of each point into consideration, which means
our method is frame agnostic. Ideally, all the points of the
same instance from several frames are clustered into a single
cluster, which matches the target of the proposed temporally
unified instance clustering. To integrate the clustering strat-
egy into the single frame version DS-Net, we need to obtain
the point-level features of several consecutive LiDAR frames
from the backbone. There are two possible ways to achieve
that. The first one is to merge consecutive LiDAR scans at
the data level. The second one is to merge the feature map
of each individual frame right after the backbone. From the
perspective of computational efficiency, the first one is more
efficient. After downsampling and voxelization, processing

multiple frames is equivalent to the single-frame input for
the backbone feature extraction part. To justify that, we
have tested the GPU memory usage for both strategies
given two consecutive frames are merged (examples are
from the typical SemanticKITTI LiDAR scans). The data-
level fusion consumes around 5483 MB of memory, while
the feature-level fusion requires around 9966 MB. As for the
performance, we find out that the first one is also a better
strategy through extensive experiments. Therefore, based on
the above analysis, we propose the 4D extension version of
DS-Net, which is illustrated below.
4D Extension of DS-Net. The 4D extension version of DS-
Net (namely 4D-DS-Net) for the 4D panoptic segmentation
is shown in Fig. 4. Using the ego-poses estimated by SLAM
algorithms [17], we align consecutive LiDAR point clouds
and overlap them to get the temporally fused LiDAR point
clouds. The fused LiDAR point clouds from frame t to t+ i
are defined as:

Pt:t+i = {p|p ∈ P ′
t . . . P

′
t+i}, (6)

where P ′
t+i = ((Pt+iR

−1
t+i + Tt+i)− Tt)Rt . (7)

Rt+i and Tt+i represent the rotation matrix and translation
vector of frame t + i. The semantic segmentation branch
predicts semantic labels for each point as that of the single
version. The instance segmentation branch produces tem-
porally consistent IDs for each point, which is achieved by
the temporally unified instance clustering proposed above.
Specifically, the foreground points are first regressed to the
centers of the overlapped instances. Then, the regressed cen-
ters are further clustered by the proposed dynamic shifting
network in the frame agnostic way. Such a unified instance
clustering step naturally associates the same instance across
frames and saves the effort of tracking algorithms. Once
we ensure the consistency of things IDs in two consecutive
frames, the instance IDs can be propagated to the whole
sequence through overlapping frames. Specifically, in the
case of using two consecutive frames as a 4D volume,
there is one overlapping frame between two consecutive
4D volumes. The overlapping frame would have two sets
of predicted instances, upon which we calculate the IoU as
the association score. For an association score over 0.5, the
two instances make a match. In this way, the instance IDs
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are propagated to the whole sequence, which gives the final
4D panoptic segmentation results.

4 EXPERIMENTS

We conduct experiments on two large-scale datasets: Se-
manticKITTI [17] and Panoptic nuScenes [18], [19]. In addi-
tion, we evaluate our extension of 4D panoptic segmentation
on SemanticKITTI.
SemanticKITTI. The SemanticKITTI dataset [11] is the first
dataset that presents the challenge of LiDAR-based panoptic
segmentation and provides the benchmark. 4D-PLS [12]
further extends the benchmark with the novel task of
4D panoptic segmentation. SemanticKITTI contains 23,201
frames for training and 20,351 frames for testing. There
are 28 annotated semantic classes that are remapped to 19
classes for the LiDAR-based panoptic segmentation task,
among which 8 classes are things classes, and 11 classes are
stuff classes. Each point is labeled with a semantic label and
a temporally consistent instance ID which will be set to 0 if
the point belongs to stuff classes.
Panoptic nuScenes. The Panoptic nuScenes dataset [19] is
a large-scale LiDAR-based panoptic segmentation dataset
built on nuScenes [18]. 1000 scenes with 32 semantic classes
and 300k instances are provided in this dataset.
Evaluation Metrics of LiDAR-based Panoptic Segmenta-
tion. As defined in [11], the evaluation metrics of LiDAR-
based panoptic segmentation are the same as that of image
panoptic segmentation defined in [9] including Panoptic
Quality (PQ), Segmentation Quality (SQ) and Recognition
Quality (RQ) are calculated across all classes. For each class,
the PQ, SQ, and RQ are defined as follows:

PQ =

∑
(i,j)∈TP IoU(i, j)

|TP |︸ ︷︷ ︸
SQ

× |TP |
|TP |+ 1

2 |FP |+ 1
2 |FN |︸ ︷︷ ︸

RQ

. (8)

The above three metrics are also calculated separately on
things and stuff classes which give PQTh, SQTh, RQTh, and
PQSt, SQSt, RQSt. PQ† is defined by swapping PQ of each
stuff class to its IoU then averaging over all classes. In
addition, mean IoU (mIoU) is also used to evaluate the
quality of the sub-task of semantic segmentation.
Evaluation Metrics of 4D Panoptic LiDAR Segmentation.
Several metrics are proposed by previous video panoptic
segmentation works [10], [12], [37]. Among them, we choose
to use LSTQ (LiDAR Segmentation and Tracking Quality)
[12] as the evaluation metrics for 4D Panoptic Segmentation,
which is defined as follows:

LSTQ =

√√√√√√√
1

C

C∑
c=1

IoU(c)︸ ︷︷ ︸
Scls

× 1

T

∑
t∈T

∑
s∈S TPA(s, t)IoU(s, t)

|gtid(t)|︸ ︷︷ ︸
Sassoc

,

(9)
where Scls and Sassoc reflects the segmentation and tracking
quality respectively. TPA (True Positive Association) is de-
fined as TPA(i, j) = |pr(i) ∩ gt(j)|, which represents the
number of intersections between points that are predicted
as i and the ground truth points that have the id of j.

Implementation Details of the Backbone. Following PCSeg
[106] and MMDetection3D [107], for both datasets, each in-
put point is represented as a four-dimensional vector includ-
ing XYZ coordinates and intensity. The backbone voxelizes
a single frame to 480×360×32 voxels under the cylindrical
coordinate system. For the ground truth instance center, we
do not use the center of the annotated 3D bounding boxes.
Instead, it is approximated by the center of its tight box that
parallels axes which makes a better approximation than the
mass centers of the incomplete point clouds.
Implementation Details of Dynamic Shifting. Bandwidth
candidates are set to 0.2, 1.7, and 3.2 for both datasets. The
number of Iterations is set to 4 for both datasets. We train
the network with a learning rate of 0.002, an epoch number
of 50, and a batch size of 4 on four Geforce GTX 1080Ti. The
dynamic shifting module only takes 3-5 hours to train on
top of a pretrained backbone.
Implementation Details of 4D-DS-Net. Two consequent
LiDAR scans are aligned and overlapped for the training
and inference of 4D panoptic segmentation. The number of
FPS downsampled points in the dynamic shifting module
is set to 20000. Other hyper-parameters are the same as
their single-version counterpart. For both DS-Net and 4D-
DS-Net, we first pre-train the backbone with the semantic
segmentation loss, then fine-tune it with the instance branch
added. Finally, the dynamic shifting module is trained with
previous networks fixed.

4.1 Ablation Study
Ablation on Overall Framework. To study the effective-
ness of the proposed modules, we sequentially add the
majority voting module and dynamic shifting module to the
plain panoptic segmentation backbone. The plain backbone
consists of the cylindrical backbone, semantic and instance
branches, and Mean Shift as the clustering algorithm. The
corresponding PQ and PQTh are reported in Fig. 5 (a) which
shows that both modules contribute to the performance of
DS-Net. The novel dynamic shifting module mainly boosts
the performance of instance segmentation which is indi-
cated by PQTh where the DS-Net outperforms the backbone
(with fusion module) by 3.2% in the validation split.
Ablation on Clustering Algorithms. In order to validate
our previous analyses of clustering algorithms, we swap the
dynamic shifting module for four other widely-used heuris-
tic clustering algorithms: BFS, DBSCAN, HDBSCAN, and
Mean Shift. The results are shown in Fig. 5 (b). Consistent
with our analyses in Sec. 3.2, the density-based clustering
algorithms (e.g. BFS, DBSCAN, HDBSCAN) perform badly
in terms of PQ and PQTh while Mean Shift leads to the
best results among the heuristic algorithms. Moreover, our
dynamic shifting module shows superiority over all four
heuristic clustering algorithms.
Ablation on Bandwidth Learning Styles. In the dynamic
shifting module, it is natural to directly regress bandwidth
for each point as mentioned in Sec. 3.2. However, as shown
in Fig. 5 (c), direct regression is hard to optimize in this
case because the learning target is not straightforward. It is
difficult to determine the best bandwidth for each point, and
therefore impractical to directly apply supervision on the
regressed bandwidth. Therefore, it is easier for the network
to choose from and combine several bandwidth candidates.
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Fig. 5: Ablation Study on the Validation Set of SemanticKITTI. The proposed two modules both contribute to the final
performance of the DS-Net. The dynamic shifting module has advantages in clustering LiDAR point clouds. Weighting on
bandwidth candidates is better than directly regressing bandwidth.

TABLE 2: LiDAR-based panoptic segmentation results on the validation set of SemanticKITTI. All scores are in [%].

Method (Year) PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU
KPConv [41] + PV-RCNN [2] 51.7 57.4 63.1 78.9 46.8 56.8 81.5 55.2 67.8 77.1 63.1

Cylinder3D [15] + PV-RCNN [2] 51.9 57.5 63.8 74.2 48.5 59.5 70.2 54.3 66.9 77.1 62.9
LPASD [IROS’20] [77] 36.5 46.1 - - - 28.2 - - - - 50.7

Panoptic-TrackNet [arXiv’20] [78] 40.0 - 48.3 73.0 29.9 33.6 76.8 47.4 59.1 70.3 53.8
PointGroup [CVPR’20] [14] 46.1 54.0 56.6 74.6 47.7 55.9 73.8 45.0 57.1 75.1 55.7

PanosterK [RA-L’21] [75] 55.6 - 66.8 79.9 56.6 65.8 - - - - 61.1
Panoptic-PolarNet [CVPR’21] [81] 59.1 64.1 70.2 78.3 65.7 74.7 87.4 54.3 66.9 71.6 64.5

EfficientLPS [TRO’21] [79] 59.2 65.1 69.8 75.0 58.0 68.2 78.0 60.9 71.0 72.8 64.9
GP-S3Net [ICCV’21] [90] 63.3 71.5 75.9 81.4 70.2 80.1 86.2 58.3 72.9 77.9 73.0

Location-Guided [TIV’22] [82] 59.0 63.1 69.4 78.7 65.3 73.5 88.5 53.9 66.4 71.6 61.4
Panoptic-PHNet [CVPR’22] [89] 61.7 - - - 69.3 - - - - - 65.7

PUPS [AAAI’23] [101] 64.4 68.6 81.5 74.1 73.0 92.6 79.3 58.1 73.5 70.4 -
DS-Net (Ours) 57.7 63.4 68.0 77.6 61.8 68.8 78.2 54.8 67.3 77.1 63.5

DS-Net* (Ours) 61.4 65.2 72.7 79.0 65.2 72.3 79.3 57.9 71.1 79.3 69.6

Ablation on Backbone Choice. To demonstrate that the dy-
namic shifting module can apply to different backbones, we
report the performance of a rectangular convolution version
of plain backbone and DS-Net Fig. 5 (d). An improvement
of 2.3% in terms of PQ on both the rectangular convolution
version and cylinder convolution version of the plain back-
bone is achieved on the validation set of SemanticKITTI,
which shows the proposed dynamic shifting module can
also work with other backbones.

4.2 Comparisons on SemanticKITTI

In Tab. 2 and Tab. 3, we summarize all available results on
SemanticKITTI and annotate them with venue and year for
a clear and thorough comparison. DS-Net* reports the result
of changing the backbone from Cylinder3D to SPVCNN
[56]. Results show that the original DS-Net achieves supe-
rior performances among concurrent works. After migrating
to a stronger backbone, DS-Net still achieves competitive
scores in both validation and test splits, showing the ef-
fectiveness of the proposed dynamic shifting network. It
is worth noting that PointGroup [14] performs poorly on
the LiDAR point clouds which shows that indoor solutions
are not suitable for challenging LiDAR point clouds. More-
over, methods that use hybrid backbones e.g., GP-S3Net
and Panoptic-PHNet, have better overall performance than
single-backbone ones. This observation may serve as strong
clues for future researchers when choosing backbones. This
also clearly indicates that hybrid backbone structure design
is also a promising future direction.

Backbone with Fusion DS-Net Ground Truth

Fig. 6: Qualitative Results on SemanticKITTI. The dynamic
shifting module helps to correctly segment instances with
complex shapes and densities.

We show some visualizations of our results in Fig. 6.
The left shows the results of the bare backbone with the
majority voting module. The middle one shows the results
of the DS-Net and the right one is the ground truth. Our DS-
Net is capable of correctly handling instances with complex
shapes and densities, while the backbone method tends
to either over- or under-segment in these cases. For more
visualization, please refer to the supplementary material.

4.3 Comparisons on Panoptic nuScenes

We report results on validation and test sets of Panoptic
nuScenes in Tab. 4 and Tab. 5. We collect all the methods that
report results on this dataset and annotate them with venues
and years for a complete comparison. Similarly, DS-Net*
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TABLE 3: LiDAR-based panoptic segmentation results on the test set of SemanticKITTI. All scores are in [%].

Method (Year) PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU
KPConv [41] + PointPillars [1] 44.5 52.5 54.4 80.0 32.7 38.7 81.5 53.1 65.9 79.0 58.8

RangeNet++ [4] + PointPillars [1] 37.1 45.9 47.0 75.9 20.2 25.2 75.2 49.3 62.8 76.5 52.4
KPConv [41] + PV-RCNN [2] 50.2 57.5 61.4 80.0 43.2 51.4 80.2 55.9 68.7 79.9 62.8
Cylinder3D [54] + SLR [102] 56.0 62.6 67.4 82.1 51.8 61.0 84.2 59.1 72.1 80.6 67.9

LPASD [IROS’20] [77] 38.0 47.0 48.2 76.5 25.6 31.8 76.8 47.1 60.1 76.2 50.9
Panoptic-TrackNet [arXiv’20] [78] 43.1 50.7 53.9 78.8 28.6 35.5 80.4 53.6 67.3 77.7 52.6

4D-PLS [CVPR’21] [12] 50.3 57.8 61.0 81.6 - - - - - - 61.3
PanosterK [RA-L’21] [75] 52.7 59.9 64.1 80.7 49.4 58.5 83.3 55.1 68.2 78.8 59.9

Panoptic-PolarNet [CVPR’21] [81] 54.1 60.7 65.0 81.4 53.3 60.6 87.2 54.8 68.1 77.2 59.5
PC-Cluster [ICRA’22] [85] 56.5 63.1 67.9 82.3 52.9 62.1 84.8 59.1 72.1 80.6 68.2

CPSeg [arXiv’21] [103] 57.0 63.5 68.8 82.2 55.1 64.1 86.1 58.4 72.3 79.3 62.7
EfficientLPS [TRO’21] [79] 57.4 63.2 68.7 83.0 53.1 60.5 87.8 60.5 74.6 79.5 61.4

GP-S3Net [ICCV’21] [90] 60.0 69.0 72.1 82.0 65.0 74.5 86.6 56.4 70.4 78.7 70.8
SSDF [RS’22] [83] 54.6 61.5 65.5 81.7 54.0 61.9 86.7 55.1 68.2 78.1 60.6

Location-Guided [TIV’22] [82] 54.7 61.1 65.5 81.6 54.6 62.1 87.3 54.8 68.0 77.5 59.0
SMAC-Seg [ICRA’22] [80] 56.1 62.5 67.9 82.0 53.0 61.8 85.6 58.4 72.3 79.3 63.3

PVCL [ICRA’22] [87] 59.1 65.7 69.6 84.0 59.8 66.7 89.2 58.6 71.6 80.3 64.0
SCAN [arXiv’22] [88] 61.5 67.5 84.5 72.1 61.4 88.1 69.3 61.5 81.8 74.1 67.7

Panoptic-PHNet [CVPR’22] [89] 61.5 67.9 72.1 84.8 63.8 70.4 90.7 59.9 73.3 80.5 66.0
PUPS [AAAI’23] [101] 62.2 65.8 84.2 72.8 65.7 90.6 72.7 59.6 79.5 73.1 -

DS-Net (Ours) 55.9 62.5 66.7 82.3 55.1 62.8 87.2 56.5 69.5 78.7 61.6
DS-Net* (Ours) 59.8 66.5 70.6 83.9 59.1 66.7 88.2 60.3 73.4 80.7 67.7

TABLE 4: LiDAR-based panoptic segmentation results on the validation set of Panoptic nuScenes. All scores are in [%].

Method (Year) PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU
Panoptic-TrackNet [arXiv’20] [78] 51.4 56.2 63.3 80.2 45.8 55.9 81.4 60.4 75.5 78.3 58.0

VIN [arXiv’21] [91] 51.7 57.4 61.8 82.6 45.7 53.7 83.6 61.8 75.4 80.9 73.7
EfficientLPS [TRO’21] [79] 59.2 62.8 82.9 70.7 51.8 80.6 62.7 71.5 84.3 84.1 69.4

Panoptic-PolarNet [CVPR’21] [81] 63.4 67.2 75.3 83.9 59.2 70.3 84.1 70.4 83.5 83.6 66.9
CPSeg [arXiv’21] [103] 68.9 73.6 80.4 84.9 68.7 78.4 86.8 69.2 82.5 83.1 72.7

PVCL [ICRA’22] [87] 64.9 67.8 77.9 81.6 59.2 72.5 79.7 67.6 79.1 77.3 73.9
SCAN [arXiv’22] [88] 65.1 68.9 85.7 75.3 60.6 85.7 70.2 72.5 85.7 83.8 77.4

SMAC-Seg [ICRA’22] [80] 67.0 71.8 78.2 85.0 65.2 74.2 87.1 68.8 82.2 82.9 72.2
Panoptic-PHNet [CVPR’22] [89] 74.7 77.7 84.2 88.2 74.0 82.5 89.0 75.9 86.9 86.8 79.7

LidarMultiNet [arXiv’22] [92] 81.8 - - - - - - - - - 83.6
PUPS [AAAI’23] [101] 74.7 77.3 89.4 83.3 75.4 91.8 81.9 73.6 85.3 85.6 -

DS-Net (Ours) 60.6 63.7 72.6 81.2 53.3 65.2 79.2 72.7 85.0 84.7 73.7
DS-Net* (Ours) 64.7 67.6 76.1 83.5 58.6 64.2 82.8 74.7 86.5 85.5 76.3

reports the results of changing the backbone to SPVCNN
[56]. Among concurrent works, our method achieves the
best results. Admittedly, there still exists a gap between
our results and more recent solutions. The first three lines
in Tab. 5 are combinations of strong segmentation and de-
tection methods. Panoptic-PHNet and LidarMultiNet even
surpass 80% in the PQ score. These methods are either top-
down methods or heavily borrow structures from detection
solutions, e.g., center heatmap. Their strong performances
show that for datasets like panoptic nuScenes, where LiDAR
scans are sparser, pure clustering-based methods have more
disadvantages than top-down ones.

4.4 4D Panoptic LiDAR Segmentation Results

Comparison Methods. Since the task is fairly new, we
choose to compare with the first work [12] that proposes this
task, denoted as ‘4D-PLS’, two recent works 4D-StOP [76],
CIA [86] and several ‘Semantic Segmentation + 3D Object
Detection + Tracking’ assembled baseline methods. Besides,
we also construct a baseline method ‘DS-Net + Tracking’ by

appending a tracking module [10] to the instance segmen-
tation branch. As discussed in Sec. 3.4, we also implement
the feature map fusion on top of DS-Net, namely ‘DS-Net +
Feat. Fus.’. Specifically, we perform a max pooling operation
on the aligned 3D feature maps extracted from consecutive
LiDAR frames by the backbone. Then the fused feature
map is fed to semantic and instance branches. We refer to
our proposed method as ‘4D-DS-Net’. 4D-DS-Net* indicates
changing the backbone to Cylinder3D++ [54].

Evaluation Results. As shown in Tab. 6 and Tab. 7, our
proposed method surpasses all assembled baseline meth-
ods and the state-of-the-art methods in terms of the main
metric LSTQ in both validation and test sets. ‘4D-DS-Net’
surpasses ‘DS-Net + Tracking’ by 2.1% in terms of LSTQ
on the validations set, which proves that simply stacking
modules is hard to fully utilize the temporal information
as mentioned in Sec. 3.4. Note that “DS-Net + Feat. Fus.”
has a better association score Sassoc but worse segmentation
score Scls than 4D-DS-Net. We think there might be two
reasons. a) The feature-level fusion extracts features from
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TABLE 5: LiDAR-based panoptic segmentation results on the test set of Panoptic nuScenes. All scores are in [%].

Method (Year) PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU
SPVNAS [56] + CenterPoint [104] 72.2 76.0 81.2 88.5 71.7 79.4 89.7 73.2 84.2 86.4 76.9

Cylinder3D++ [54] + CenterPoint [104] 76.5 79.4 85.0 89.6 76.8 84.0 91.1 76.0 86.6 87.2 77.3
(AF)2-S3Net [105] + CenterPoint [104] 76.8 80.6 85.4 89.5 79.8 86.8 91.8 71.8 83.0 85.7 78.8

EfficientLPS [TRO’21] [79] 62.4 66.0 74.1 83.7 57.2 68.2 83.6 71.1 84.0 83.8 66.7
Panoptic-PolarNet [CVPR’21] [81] 63.6 67.1 75.1 84.3 59.0 69.8 84.3 71.3 83.9 84.2 67.0

Panoptic-PHNet [CVPR’22] [89] 80.1 82.8 87.6 91.1 82.1 88.1 93.0 76.6 86.6 87.9 80.2
LidarMultiNet [arXiv’22] [92] 81.4 - - - - - - - - - 84.0

DS-Net (Ours) 59.2 62.6 68.8 83.8 51.1 59.6 82.6 72.6 84.0 85.8 75.1
DS-Net* (Ours) 65.8 68.9 75.2 85.9 60.7 69.6 85.7 74.3 85.2 86.2 77.1

TABLE 6: 4D panoptic LiDAR segmentation results on the
validation set of SemanticKITTI. All scores are reported in
[%]. RN: RangeNet++ [4]; KP: KPConv [41]; PP: PointPillars
[1]; MOT: Multi-Object Tracking [108]; SFP: Scene Flow
based Propagation [109].

Method LSTQ Sassoc Scls IoUst IoUth

RN + PP + MOT 43.8 36.3 52.8 60.5 42.2
KP + PP + MOT 46.3 37.6 57.0 64.2 54.1
RN + PP + SFP 43.4 35.7 52.8 60.5 42.2
KP + PP + SFP 46.0 37.1 57.0 64.2 54.1

MOPT [78] 24.8 11.7 52.4 62.4 45.3
4D-PLS (2-scan) [12] 59.9 58.8 61.0 65.0 63.1
4D-PLS (4-scan) [12] 62.7 65.1 60.5 65.4 61.3

4D-StOP (2-scan) [76] 66.4 71.8 61.4 64.9 64.1
4D-StOP (4-scan) [76] 67.0 74.4 60.3 65.3 60.9
DS-Net + Tracking 65.9 68.4 63.1 64.0 61.9

DS-Net + Feat. Fus. 67.8 72.1 63.7 64.2 63.1
4D-DS-Net (2-scan) 68.0 71.3 64.8 64.5 65.3
4D-DS-Net (3-scan) 68.3 71.5 65.1 64.4 66.0
4D-DS-Net (4-scan) 68.1 71.3 64.9 64.4 65.4

TABLE 7: 4D panoptic LiDAR segmentation results on the
test set of SemanticKITTI. All scores are reported in [%].
RN: RangeNet++ [4]; KP: KPConv [41]; PP: PointPillars [1];
MOT: Multi-Object Tracking [108]; SFP: Scene Flow based
Propagation [109].

Method LSTQ Sassoc Scls IoUst IoUth

RN + PP + MOT 35.5 24.1 52.4 64.5 35.8
KP + PP + MOT 38.0 25.9 55.9 66.9 47.7
RN + PP + SFP 34.9 23.3 52.4 64.5 35.8
KP + PP + SFP 38.5 26.6 55.9 66.9 47.7

4D-PLS [12] 56.9 56.4 57.4 66.9 51.6
CIA [86] 63.1 65.7 60.6 66.9 52.0

4D-StOP (2-scan) [76] 62.9 67.3 58.8 68.3 53.3
4D-StOP (4-scan) [76] 63.9 69.5 58.8 67.7 53.8

4D-DS-Net (2-scan) 63.7 67.6 60.0 66.2 51.6
4D-DS-Net (3-scan) 64.2 67.5 61.0 66.8 52.9
4D-DS-Net (4-scan) 64.0 67.4 60.6 66.9 52.3

each LiDAR scan individually, making the instance-level
feature extraction less affected by the “trailing” issue as
discussed in Q1. This leads to better 4D instance cluster-
ing, which favors the association score Sassoc. b) 4D-DS-
Net takes the data-level fusion strategy, meaning several
consecutive LiDAR frames are aligned, overlapped, and
sent to the feature extraction backbone as a single scan.
Originally partially observed things and stuff now have
information from multiple viewing angles, which lowers
the difficulty of semantic segmentation. Therefore, the data-

TABLE 8: Ablation results of Single Frame PQ Evaluation of
4D-DS-Net on the validation set of SemanticKITTI.

Name PQ PQ† PQTh PQSt mIoU
DS-Net 57.7 63.4 61.8 54.8 63.5

DS-Net + Feat. Fus. 58.6 63.9 63.4 55.0 63.7
4D-DS-Net 59.5 64.5 64.4 55.9 64.8

level fusion strategy favors the segmentation score Scls. We
have also ablated on the number of frames used for 4D
panoptic segmentation on both validation and test set of
SemanticKITTI [12], [17], as shown in Tab. 6 and 7. It is
interesting to see that “3-scan” version achieves the best
result among the three variations. We think this is because,
with more scans overlapped, the “trailing” issue poses
more challenges to instance clustering in the 4D volume.
However, more scans would give the network denser point
clouds and more observations of the scene, which favors the
semantic understanding. Therefore, “3-scan” is the balance
point between these two factors. We have also included this
discussion in the main manuscript. However, the amount
of memory and computation overhead of ‘DS-Net + Feat.
Fus.’ compared to that of ‘4D-DS-Net’ still justifies our
preference for data-level fusion. For qualitative evaluations,
please refer to the supplementary material.
4D Panoptic Segmentation Improves the Single Frame
PQ Evaluation. We also evaluate the single frame metrics
using the 4D version of DS-Net on the validation set of Se-
manticKITTI. As shown in Tab. 8, the 4D version of DS-Net
surpasses the single frame DS-Net by 1.8% in terms of PQ.
It shows that the temporal information can largely enrich
the semantic information extracted by the backbone and
therefore improve the overall performance. The improved
single-frame segmentation quality also explains the better
performance in the task of 4D panoptic LiDAR segmen-
tation. Moreover, ‘4D-DS-Net’ also outperforms ‘DS-Net +
Feat. Fus.’ by 0.9% in terms of PQ, which shows the supe-
riority of data-level fusion over simple feature-level fusion.
Of course, more complex feature fusion could be designed
and has the potential to outperform data-level fusion. But
with minimal memory and computation overhead, data-
level fusion is the first choice here.

4.5 Further Analysis

Robust to Parameter Settings. As shown in Tab. 9, six sets of
bandwidth candidates are set for independent training, and
the corresponding results are reported. The stable results
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TABLE 9: Ablation results of different bandwidth candidates
settings. All scores are reported in [%].

Bandwidth
Candidates (m) PQ PQ† RQ SQ mIoU

0.2, 1.1, 2.0 57.4 63.0 67.7 77.4 63.7
0.2, 1.3, 2.4 57.5 63.1 67.7 77.6 63.5
0.2, 1.5, 2.8 57.6 63.2 67.8 77.6 63.7
0.2, 1.7, 3.2 57.7 63.4 68.0 77.6 63.5
0.2, 1.9, 3.6 57.7 63.3 67.9 77.6 63.4
0.2, 2.1, 4.0 57.4 63.1 67.7 77.5 63.3

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
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Fig. 7: Proportional Relationship Between Sizes and the
Learned Bandwidths. The x-axis represents the class-wise
average size of the regressed center of instances while the
y-axis stands for the average learned bandwidth of different
things classes.

show that DS-Net is robust to different parameter settings
as long as the picked bandwidth candidates are comparable
to the instance sizes. Unlike previous heuristic clustering al-
gorithms that require some hyperparameter searching, DS-
Net can automatically adjust to different instance sizes and
point distributions and maintain stable clustering quality.
Interpretable Learned Bandwidths. By averaging the band-
width candidates weighted by the learned weights, the
learned bandwidth for every point could be approximated
accordingly. The average learned bandwidths of different
classes are shown in Fig. 7. As can be seen, the average
learned bandwidths are roughly proportional to the instance
sizes of the corresponding classes, which is consistent with
the expectation that dynamic shifting can dynamically ad-
just to different instance sizes.
Visualization of Dynamic Shifting Iterations. As visual-
ized in Fig. 8, the black points are the original point clouds
of different instances including person, bicyclist, and car.
The seeding points are colored in spectral colors where the
redder points represent higher learned bandwidth and bluer
points represent lower learned bandwidth. The seeding
points farther away from the instance centers tend to learn
higher bandwidths in order to quickly converge. While the
well-learned regressed points tend to have lower band-
widths to maintain their positions. After four iterations, the
seeding points converged around the instance centers.
Learned Bandwidths of Different Iterations. The average
learned bandwidths of different iterations are shown in
Fig. 9. As expected, as the iteration rounds grow, points
of the same instance gather tighter which usually requires
smaller bandwidths. After four iterations, learned band-

Regressed Centers Iteration 1 Iteration 2 Iteration 3 Iteration 4

Fig. 8: Visualization of Dynamic Shifting Iterations. The
black points are the original LiDAR point clouds of in-
stances. The colored points are seeding points. From left
to right, with the iteration number increases, the seeding
points converge to cluster centers.

Fig. 9: Relationship between Learned Bandwidths and
Iterations. With the number of iterations increasing, the
learned bandwidth decreases. As can be seen from the
curves, at the fifth iteration, the learned bandwidths of most
classes drop near the lower limit.

widths of most classes have dropped to 0.2, which is the
lowest they can get, meaning that four iterations are enough
for things points to converge to cluster centers, which further
validates the conclusion made in the last paragraph.

Inference Time Analysis. The inference time of different
modules of DS-Net on nuScenes is reported in Tab. 10. The
dynamic shifting module takes 33.1 ms per frame, which
is attributed to downsampling and GPU-accelerated matrix
operations. After kernel operations, the seeding points are
mostly converged. Therefore, the time of the final cluster
step is negligible. Compared to the Mean Shift, which takes
190.3 ms, the proposed dynamic shifting module is efficient
and performs better.

Failure Cases. The fast-moving instances would lead to
overlapped points with long trailing, which increases dif-
ficulty for instance clustering in 4D volumes. This would
result in the over-segmentation in the 4D volumes, which
leads to wrongly changing the instance ID during tracking.
Other than the trailing issue, hard classes are prone to
be wrongly segmented. For qualitative evaluation, please
kindly refer to the supplementary material.
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TABLE 10: Inference time breakdown comparisons between
our Dynamic Shift (DS) and the Mean Shift (MS) counter-
part. The numbers reported are in [ms].

Module Voxelize Cylinder Sem Ins Cluster Fusion Other All
MS 35.3 106.7 5.3 44.4 190.3 3.3 36.7 422.0
DS 35.3 106.7 5.3 44.4 33.1 3.3 36.7 264.8

5 CONCLUSION

With the goal of providing a holistic perception of au-
tonomous driving, we proposed a unified 3D and 4D
LiDAR-based panoptic segmentation framework. In order
to tackle the challenge brought by the non-uniform distribu-
tions of LiDAR point clouds, we proposed the novel DS-Net
which is specifically designed for effective panoptic segmen-
tation of LiDAR point clouds. The novel dynamic shifting
module adaptively shifts regressed centers of instances with
different densities and varying sizes. By constructing 4D
data volumes and performing dynamic shifting clustering
on them, we naturally extend the single-frame version of
DS-Net to the 4D version. Through extensive experiments
on two large-scale datasets, we show the competitive per-
formance of DS-Net and 4D-DS-Net. Further analyses show
the robustness of the dynamic shifting module and the
interpretability of the learned bandwidths.
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