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TL;DR The RoboDepth Benchmark Benchmark Results
% RoboDepth is a comprehensive benchmark designed for probing the OoD “* We benchmarked 42 state-of-the-art monocular depth estimation models “* We adopt mean Corruption Error (mCE) and mean Resilience Rate (mRR)
robustness of monocular depth estimation algorithms. It includes a total of from indoor and outdoor scenes, on their robustness against corruptions, via to measure the robustness of depth estimation models under corruptions.
18 common corruption types, ranging from weather and lighting conditions, newly established datasets: KITTI-C, NYUDepth2-C, and KITTI-S. mCE (%) MRR (%) DEE (%)
sensor failures and movements, and noises during the data processing. L 7 »
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O < We reveal that several factors related to the input modality, resolution, and
—— — A —BiFNer ] pretraining strategy can play important roles in robust depth estimation.
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% Existing supervised & self-supervised learning-based monocular depth
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estimation algorithms often use “clean” sequences for training. The data - 0.4
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captured by cameras in the real world, however, may include distortions, _FSRE-Depth | [_HR-Depth | [_ManyDepth | o
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processing. In this project, we aim to answer the following questions:
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“* How robust are the existing monocular depth estimation algorithms against
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the various corruptions that tend to occur in the real world? 0.4
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< What makes an algorithm more robust to certain corruption types? - II II I I |I I
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% Can we design novel monocular depth estimation algorithms that are robust | Con “ II II II II II — II i ll
and reliable across a wide range of common corruptions? [ MonoViT | [ RA-Depth | [ Lite-Mono | & .
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— — — “ We generate realistic corruptions using clean data to mimic the real-world < We observe that model size and FLOPs show distinct correlations with mCE;
Dark out-of-training-distribution scenario, which is proven via pixel distributions.

meanwhile, robustness finetuning is capable of improving OoD robustness.
This guarantees that our findings and conclusions can be generally applied.
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“ To avoid any unfairness in robustness comparisons, we unified common s © @Y = s ©0® ® 0.300 '
configurations among different candidate depth estimation models. /2 ® & ‘ 0.260 B
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