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TL;DR The Seal Framework Comparative Study
% We introduce Seal, a novel framework tailored to harness vision foundation < We generate, for each {LiDAR, camera} pair {Pt, 7'} at timestamp t and < We verify the effectiveness of Seal across eleven point cloud datasets with
models (VFMs) to segment diverse automotive point cloud sequences. another LiDAR frame P*™ at timestamp t + n, the semantic superpixels and various scales, modalities, sensor configurations, fidelities, and noise levels.
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or 3D annotations during pretraining; ii) Consistency for aligning between
LiDAR and camera via cross-modal contrastive learning; iii) Generalizability
for exhibiting effectiveness across a wide range of point cloud datasets.

Ablation Study
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% The effectiveness of each component in Seal has been proven; with spatial &
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Knowledge Transfer from VFMs temporal contrastive, we can learn meaningful multi-modal representations.
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% Such a design can mitigate the potential
errors caused by inaccurate cross-sensor
calibration and synchronization.
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= 2 “* Besides, point-to-segment regularization
Query: "truck” = = W = = O = . = = mechanism can serve to aggregate the
spatial information thus yielding better-
distinguishing instances in LiDAR scenes.

% Compared to prior works, our VFM-assisted contrastive learning: i) mitigates
the severe self-conflict problem; ii) forms a more coherent optimization
landscape, yielding a faster convergence rate; iii) reduces the number of “ Regularization at different levels enables
superpixels generated, which extenuates the overhead during pretraining. Seal to be consistent and generalizable.
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