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Robust Perception in Autonomous Driving

Topic #1: Robustness under Data-Efficient Settings

• Data collection is much easier than annotation

• Learning perception models with semi supervisions

• Goal: Achieve satisfactory perception performance with limited

annotations

Topic #2: Robustness under Common Corruptions

• Data corruption and sensor failure are common issues

• Testing perception models with corrupted scenarios

• Goal: Achieve reliable perception performance under out-of-

distribution corruptions



Topic #1
Robustness

under Data-Efficient Settings
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Lingdong Kong Jiawei Ren Liang Pan Ziwei Liu

LaserMix for Semi-Supervised LiDAR
Semantic Segmentation

CVPR 2023 (Highlight)



TL;DR

• Leverages the spatial prior in driving scenes
for data-efficient learning;

• Constructs low-variational areas via laser
beam mixing;

• Encourages the model to make confident
and consistent predictions before and after
mixing;

• Achieves competitive results over full 
supervision counterparts with 2x to 5x fewer
annotations

LaserMix is a data-efficient learning framework designed for LiDAR segmentation that:



TL;DR
Groundtruth LaserMix (Prediction) LaserMix (Error Map)



Autonomous Driving Perception

From left to right:
• LiDAR semantic segmentation
• LiDAR panoptic segmentation
• 3D object detection
• 4D LiDAR panoptic segmentation

Why LiDAR sensors?
• Accurate depth sensing
• Robust at low-light conditions
• Dense perceptions
• …



LiDAR Semantic Segmentation

A. Milioto, et al. “RangeNet++: Fast and accurate LiDAR semantic segmentation,” IROS, 2019.



LiDAR Semantic Segmentation
• SemanticKITTI

• Full labels (100%)
• 19 semantic classes
• 100 m x 100 m
• Up to 4.5 hours

J. Behley, et al. “Semantickitti: A dataset for semantic scene understanding of LiDAR sequences,” ICCV, 2019.



LiDAR Semantic Segmentation
• SemanticKITTI

• Full labels (100%)
• 19 semantic classes
• 100 m x 100 m
• Up to 4.5 hours

O. Unal, et al. “Scribble-supervised LiDAR semantic segmentation,” CVPR, 2022.

• ScribbleKITTI

• Weak (scribble) labels
(8.06%)

• 19 semantic classes
• 100 m x 100 m
• 10 - 25 min per scan
• 90% time saving



Semi-Supervised LiDAR Segmentation

• We target on the less-explored semi-
supervised LiDAR semantic
segmentation.

Objective
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Semi-Supervised LiDAR Segmentation

• We target on the less-explored semi-
supervised LiDAR semantic
segmentation.

• Our goal is to leverage the abundant
raw LiDAR scans for training accurate
segmentation models.

• We propose LaserMix to make
advantages of the spatial prior in LiDAR
scenes for effective learning with semi
supervisions.

Objective



Spatial Prior

Certain class tends to appear at certain areas around the ego-vehicle!



Overview

(a)Motivation. Semantic scene priors are overt for each category in LiDAR point clouds.
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Overview

(a)Motivation. Semantic scene priors are overt for each category in LiDAR point clouds.
(b)Generalizability. LaserMix can be added into various popular LiDAR representations.
(c)Effectiveness. LaserMix helps to improve both semi- and fully-supervised settings.



Laser Partition & Mixing

1. Partitioning the captured LiDAR scan 
into low-variational areas. 

Three-Step Procedure
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Laser Partition & Mixing

1. Partitioning the captured LiDAR scan 
into low-variational areas. 

2. Efficiently mixing every area in the 
LiDAR scan with foreign data.

3. Encouraging the LiDAR segmentation 
models to make confident and 
consistent predictions on the same 
area in different mixing.

Three-Step Procedure



Laser Partition & Mixing
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Consistency Regularization



Consistency Regularization



Derivation

LiDAR data and labels strongly correlate with the area 𝐴
𝐻 𝑋!", 𝑌!" 𝐴  is low

𝐻 𝑋!", 𝑌!" 𝐴 = Outer	Rings

A Simplified Case:
Color correlates with the row; each row has two colors

𝐻(𝑋, 𝑌|𝐴 ∈ {2×2}) 	= 	log 4

𝐻 𝑋, 𝑌 𝐴 ∈ 2×1, 2×1 = log 2
𝐻 𝑋, 𝑌 𝐴 ∈ 1×2, 1×2 = log 4



Derivation

• 𝐻 𝑋!", 𝑌!" 𝐴  is low => 𝐻 𝑌!" 𝑋!", 𝐴  is low (conditional entropy).

• Let 𝜃 be the parameter of the LiDAR segmentation network.

• We would like to solve the following:

• 𝐸# 𝐻# 𝑌!" 𝑋!", 𝐴 = 𝑐, where 𝑐 is a constant.

• ∑# 𝑃 𝜃 = 1 (sum to one).

• Principle of Maximum Entropy: 

• 𝑃 𝜃 ∝ exp(−𝜆	𝐻# 𝑌!" 𝑋!", 𝐴 ), where 𝜆 is the Lagrange multiplier.

spatial prior



Derivation

Certain class tends to appear at certain areas around the ego-vehicle!



Derivation

• 𝑃 𝜃 ∝ exp(−𝜆	𝐻# 𝑌!" 𝑋!", 𝐴 )  => spatial prior.

• Compute the empirical entropy:

• H𝐻# 𝑌!" 𝑋!", 𝐴 = 𝐸$!",&!",' 𝑃# 𝑌!" 𝑋!", 𝐴 log 𝑃# 𝑌!" 𝑋!", 𝐴 .

• 𝑃# 𝑌!" 𝑋!", 𝐴  means predicting the labels by the data inside an area 𝐴.

• The segmentation network predicts from full data. Therefore, we need 𝑋()* to complement 

the remaining area outside 𝐴 and marginalize 𝑋()*.

• 𝑃# 𝑦!" 𝑥!", 𝑎 = +
|$#$%|

∑-#$%∈$#$%	 𝑃#(𝑦!"|𝑥!", 𝑎, 𝑥()*).



Derivation

• 𝑃 𝜃 ∝ exp(−𝜆	𝐻# 𝑌!" 𝑋!", 𝐴 )  => spatial prior.

• 𝑃# 𝑦!" 𝑥!", 𝑎 = 𝐸$#$%[𝑃#(𝑦!"|𝑥!", 𝑎, 𝑥()*)] => marginalization.

• We maximize the following posterior:

• 𝐶 𝜃 = −𝜆 O𝐸-!"∈$!",/!"∈&!",	1∈'[𝐻],

• 𝐻 = 𝑃# 𝑦!" 𝑥!", 𝑎 · log 𝑃# 𝑦!" 𝑥!", 𝑎 ,

• 𝐻 is minimized only when 𝑃# 𝑦!" 𝑥!", 𝑎, 𝑥()*  is certain and consistent to 𝑥()*.



Derivation

• 𝐻 = +
|$#$%|

∑-#$%∈$#$%	 𝑃# 𝑦!" 𝑥!", 𝑎, 𝑥()* log 𝑃#(𝑦!"|𝑥!", 𝑎, 𝑥()*).

• 𝐻 = 0 only when 𝑃# 𝑦!" 𝑥!", 𝑎, 𝑥()*  is certain and consistent to 𝑥()*. 

• For every selected area and the data inside that area, a LiDAR segmentation network should 

make certain and consistent predictions regardless of the data outside the area.

• Directly compute 𝐸/!"∈&!" 𝐻  is infeasible / intractable, since |𝑦!"| = 𝐶2!"×4!"  is too large.

• Instead, we use the pseudo-label to make sure that 𝑃# 𝑦!" 𝑥!", 𝑎, 𝑥()*  is certain and consistent.



Experimental Settings
High-res LiDAR:
• SemanticKITTI
• Denser scenes

Low-res LiDAR:
• nuScenes
• Sparser scenes

Weak supervision:
• ScribbleKITTI
• Sparse labels



Experimental Settings
• Range View

• Backbone: FIDNet [IROS’21]
• # Param: 6.05M
• 6 x 32 x 1920 (nuScenes)
• 6 x 64 x 2048 (SemanticKITTI/ScribbleKITTI)

• Voxel
• Backbone: Cylinder3D [CVPR’21]
• # Param: 28.13M
• [240, 180, 20]

Y. Zhao, et al. “FIDNet: LiDAR point cloud semantic segmentation with fully interpolation decoding,” IROS, 2021.
X. Zhu, et al. “Cylindrical and asymmetrical 3D convolution networks for LiDAR segmentation,” CVPR, 2021.



Experimental Settings
• Range View

• Backbone: FIDNet [IROS’21]
• # Param: 6.05M
• 6 x 32 x 1920 (nuScenes)
• 6 x 64 x 2048 (SemanticKITTI/ScribbleKITTI)

• Voxel
• Backbone: Cylinder3D [CVPR’21]
• # Param: 28.13M
• [240, 180, 20]

• Data Split
• 1%, 10%, 20%, 50% (labeled)
• Random sampling
• Assume the remaining ones are unlabeled

Y. Zhao, et al. “FIDNet: LiDAR point cloud semantic segmentation with fully interpolation decoding,” IROS, 2021.
X. Zhu, et al. “Cylindrical and asymmetrical 3D convolution networks for LiDAR segmentation,” CVPR, 2021.



Experimental Results

A. Tarvainen and H. Valpola. “Mean teachers are better role models: Weight-averaged consistency targets improve semi-
supervised deep learning results,” NeurIPS, 2017.
G. French, et al. “Semi-supervised semantic segmentation needs strong, high-dimensional perturbations,” BMVC, 2020.
Y. Zou, et al. “Domain adaptation for semantic segmentation via class-balanced self-training,” ECCV, 2018.
X. Chen, et al. “Semi-supervised semantic segmentation with cross pseudo supervision,” CVPR, 2021.



Experimental Results

Also has spatial priors in scenes!

Y. Ouali, et al. “Semi-supervised semantic segmentation with cross-consistency training,” CVPR, 2020.
Z. Ke, et al. “Guided collaborative training for pixel-wise semi-supervised learning,” ECCV, 2020.



Ablation Study

(1) Results of MeanTeacher.

(2) Results of LaserMix w/ student supervisions; much better than the counterpart.

(3) Results of LaserMix w/ teacher supervisions; much better than the counterpart.



Ablation Study

A. Nekrasov, et al. “Mix3D: Out-of-context data augmentation for 3D scenes,” 3DV, 2021.
S. Yun, et al. “Cutmix: Regularization strategy to train strong classifiers with localizable features,” ICCV, 2019
T. DeVries and G. W. Taylor. “Improved regularization of convolutional neural networks with cutout,” arXiv, 2017
H. Zhang, et al. “Mixup: Beyond empirical risk minimization,” ICLR, 2018.

(a) Comparisons among different mixing techniques.



Ablation Study

A. Nekrasov, et al. “Mix3D: Out-of-context data augmentation for 3D scenes,” 3DV, 2021.
S. Yun, et al. “Cutmix: Regularization strategy to train strong classifiers with localizable features,” ICCV, 2019
T. DeVries and G. W. Taylor. “Improved regularization of convolutional neural networks with cutout,” arXiv, 2017
H. Zhang, et al. “Mixup: Beyond empirical risk minimization,” ICLR, 2018.

(a) Comparisons among different mixing techniques. (b) EMA. (c) Confidence threshold.



Ablation Study

• Inclination:
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Public Resources

• Paper: https://arxiv.org/abs/2207.00026

• Code: https://github.com/ldkong1205/LaserMix

• Tutorial: https://zhuanlan.zhihu.com/p/528689803

• Project Page: https://ldkong.com/LaserMix

https://arxiv.org/abs/2207.00026
https://github.com/ldkong1205/LaserMix
https://zhuanlan.zhihu.com/p/528689803
https://ldkong.com/LaserMix
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Benchmarking 3D Perception 
Robustness to Common Corruptions 

and Sensor Failure
Lingdong Kong1,2,*, Youquan Liu1,3,*, Xin Li1,4,*, Runnan Chen1,5, Wenwei Zhang1,6

Jiawei Ren6, Liang Pan6, Kai Chen1, Ziwei Liu6

1Shanghai AI Laboratory 2NUS 3Hochschule Bremerhaven
4ECNU 5HKU 6S-Lab, NTU



Perception Environment

*Image credit: https://zod.zenseact.com

https://zod.zenseact.com/


Robustness in RGB Images

D. Hendrycks, et al. “Benchmarking Neural Network Robustness to Common Corruptions and Perturbations,” ICLR, 2019



Robustness in RGB Images

D. Hendrycks, et al. “Benchmarking Neural Network Robustness to Common Corruptions and Perturbations,” ICLR, 2019

Corruption Error:



Robustness in RGB Images

D. Hendrycks, et al. “Benchmarking Neural Network Robustness to Common Corruptions and Perturbations,” ICLR, 2019



Robustness in Point Clouds

• Data in the point cloud format are used in safety-critical applications, such as
autonomous driving and robot navigation.

• However, this data format often suffers from severe Out-of-Distribution (OoD) 
corruptions in real-world deployment.

Corruptions are severe and OoD
e.g., occlusion, sensory noise

Clean Real-World

Applications are safety-critical 
e.g., autonomous driving

J. Ren, et al. “PointCloud-C: Benchmarking and Analyzing Point Cloud Perception Robustness under Corruptions,” preprint, 2022



Robustness in Point Clouds

• Question: Are point cloud classifiers getting more robust?

• Answer: No. Although the accuracy indicator on ModelNet40 gradually saturates, the 
robustness is at the risk of getting worse, due to the lack of a standard test suite. 

J. Ren, et al. “PointCloud-C: Benchmarking and Analyzing Point Cloud Perception Robustness under Corruptions,” preprint, 2022



Robustness in Point Clouds

J. Ren, et al. “PointCloud-C: Benchmarking and Analyzing Point Cloud Perception Robustness under Corruptions,” preprint, 2022

• Three levels of corruption sources: Object, sensor, and processing.

• Nine potential corruption types.

• Simplified into a combination of seven atomic corruptions for a more controllable
empirical analysis.



Robustness in Point Clouds

J. Ren, et al. “PointCloud-C: Benchmarking and Analyzing Point Cloud Perception Robustness under Corruptions,” preprint, 2022

• PointCloud-C is the first competition that targets the robustness of point cloud 
understanding under corruptions.

• The benchmark result suggests that point cloud classifiers are at the risk of getting 
less robust, thus highlighting the importance of proposing new designs to improve 
the robustness.

ModelNet-C ShapeNet-C



TL;DR
• We introduce Robo3D, the first systematically-

designed robustness evaluation suite for LiDAR-based
3D perception under corruptions and sensor failure

• We benchmark 34 perception models for LiDAR-based 
semantic segmentation and object detection tasks, on 
their robustness against corruptions.

• Based on our observations, we draw in-depth
discussions on the receipt of designing robust and
reliable 3D perception models.



Robo3D: Taxonomy

*More examples at: https://ldkong.com/Robo3D

https://ldkong.com/Robo3D


Robo3D: Example
Wet GroundFog

Beam Missing Crosstalk Incomplete Echo Cross-Sensor

Snow Motion Blur



Robo3D: Representation

M. Uecker, et al. “Analyzing deep learning representations of point clouds for real-time in-vehicle LiDAR perception,” arXiv, 2022.

Representation:

• 2D: range view, bird’s eye view

• 3D: cubic voxel, cylinder voxel

Operator:

• 3D: Conv3d, SparseConv, etc.

• 2D: Conv2d, Linear, etc.

• 1D: Conv1d, Linear, etc.



Robo3D: Statistics

Corruption Type:

• Include 8 types, each with 3 severity levels

Dataset (6 different sets):

• LiDAR Semantic Segmentation: 1SemanticKITTI-C, 2nuScenes-C (Seg3D), 3WOD-C (Seg3D)

• 3D Object Detection: 4KITTI-C, 5nuScenes-C (Det3D), 6WOD-C (Det3D)

Model & Algorithm (34 perception models):

• LiDAR Semantic Segmentation: 22 segmentors

• 3D Object Detection: 12 detectors

• Data Augmentation: 3 augmentation techniques



Robo3D: Metrics

Task-Specific Accuracy (Acc):

• LiDAR Semantic Segmentation: mean IoU (mIoU)

• 3D Object Detection: mean AP (mAP), nuScenes Detection Score (NDS)

Robustness Metrics:

• Mean Corruption Error (mCE):

• Mean Resilience Rate (mRR):



Robo3D: Benchmarking Result

*More results and analysis at: https://github.com/ldkong1205/Robo3D

https://github.com/ldkong1205/Robo3D


Robo3D: Key Observation

1. Existing 3D detectors and segmentors are vulnerable to real-world corruptions.

2. Models trained with LiDAR data from different sources (sensor setups) exhibit 
inconsistent sensitivities to each corruption type.

3. Representing the LiDAR data as raw points, sparse voxel, or the fusion of them tend to
yield better robustness.



Robo3D: Key Observation

4. The 3D detectors and segmentors show different sensitivities to corruption scenarios.

5. The recent out-of-context augmentation techniques improve 3D robustness by large 
margins; the flexible rasterization strategies help learn more robust features.



Robo3D: Qualitative Assessment



Robo3D: Qualitative Assessment



Thank you for your attention!


