

Derivation

LaserMix for Semi-Supervised LiDAR Semantic Segmentation

Patterns in LiDAR Scenes

LiDAR data and labels strongly correlate with the area A, i.e.,

 $H(X_{in}, Y_{in}|A)$ is low.

Spatial Prior - Definition

- $H(X_{in}, Y_{in}|A)$ is low => $H(Y_{in}|X_{in}, A)$ is low (conditional entropy).
- Let θ be the parameter of the LiDAR segmentation network.
- We would like to solve the following:
 - $E_{\theta}[H_{\theta}(Y_{\text{in}}|X_{\text{in}}, A)] = c$, where *c* is a constant.
 - $\sum_{\theta} P(\theta) = 1$ (sum to one).
- Principle of Maximum Entropy:

Spatial Prior - Evidence

Class	Туре	Proportion	Distribution	Heatmap	-
vegetation	static	24.825%			-
road	static	22.545%			
sidewalk	static	16.353%		New York	
car	dynamic	4.657%			
traffic-sign	static	0.061%			
motorcycle	dynamic	0.045%			
person	dynamic	0.036%			
bicycle	dynamic	0.018%			Statistics calculated from the SemanticKITTI dataset.

Certain class tends to appear at certain areas around the ego-vehicle!

© LaserMix for Semi-Supervised LiDAR Semantic Segmentation

Empirical Entropy By Marginalization

- $P(\theta) \propto \exp(-\lambda H_{\theta}(Y_{\text{in}}|X_{\text{in}},A)) \Rightarrow \text{spatial prior.}$
- Compute the empirical entropy:
- $\widehat{H}_{\theta}(Y_{\mathrm{in}}|X_{\mathrm{in}},A) = E_{X_{\mathrm{in}},Y_{\mathrm{in}},A}[P_{\theta}(Y_{\mathrm{in}}|X_{\mathrm{in}},A)\log P_{\theta}(Y_{\mathrm{in}}|X_{\mathrm{in}},A)].$
- $P_{\theta}(Y_{\text{in}}|X_{\text{in}}, A)$ means predicting the labels by the data inside an area A.
- The segmentation network predicts from full data. Therefore, we need X_{out} to complement the remaining area outside *A* and marginalize X_{out}.

•
$$P_{\theta}(y_{\text{in}}|x_{\text{in}}, a) = \frac{1}{|X_{\text{out}}|} \sum_{x_{\text{out}} \in X_{\text{out}}} P_{\theta}(y_{\text{in}}|x_{\text{in}}, a, x_{\text{out}}).$$

© LaserMix for Semi-Supervised LiDAR Semantic Segmentation

MAP Estimation

- $P(\theta) \propto \exp(-\lambda H_{\theta}(Y_{\text{in}}|X_{\text{in}},A)) \Rightarrow \text{spatial prior.}$
- $P_{\theta}(y_{\text{in}}|x_{\text{in}}, a) = E_{X_{\text{out}}}[P_{\theta}(y_{\text{in}}|x_{\text{in}}, a, x_{\text{out}})] \Rightarrow$ marginalization.
- We maximize the following posterior:
 - $C(\theta) = -\lambda \hat{E}_{x_{\text{in}} \in X_{\text{in}}, y_{\text{in}} \in Y_{\text{in}}, a \in A}[H],$
 - $H = P_{\theta}(y_{\text{in}}|x_{\text{in}}, a) \cdot \log P_{\theta}(y_{\text{in}}|x_{\text{in}}, a),$
 - *H* is minimized only when $P_{\theta}(y_{in}|x_{in}, a, x_{out})$ is certain and consistent to x_{out} .

© LaserMix for Semi-Supervised LiDAR Semantic Segmentation

Concluding Remark

- $H = \frac{1}{|X_{\text{out}}|} \sum_{x_{\text{out}} \in X_{\text{out}}} P_{\theta}(y_{\text{in}} | x_{\text{in}}, a, x_{\text{out}}) \log P_{\theta}(y_{\text{in}} | x_{\text{in}}, a, x_{\text{out}}).$
- H = 0 only when $P_{\theta}(y_{in}|x_{in}, a, x_{out})$ is certain and consistent to x_{out} .
- For every selected area and the data *inside* that area, a LiDAR segmentation network should make certain and consistent predictions regardless of the data *outside* the area.
- Directly compute $E_{y_{in} \in Y_{in}}[H]$ is infeasible / intractable, since $|y_{in}| = C^{H_{in} \times W_{in}}$ is too large.
- Instead, we use the pseudo-label to make sure that $P_{\theta}(y_{in}|x_{in}, a, x_{out})$ is certain and consistent.