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Figure 1. Open-vocabulary event-based semantic segmentation (OpenESS). Our framework is capable of performing zero-shot seman-
tic segmentation of event data streams with open vocabularies. Given raw events and text prompts as inputs, OpenESS outputs semantically
coherent open-world predictions across various adjective, fine-grained, and coarse categories. The last three columns show the language-
guided attention maps where regions of a high similarity score to the given text prompts are highlighted. Best viewed in colors.

Abstract

Event-based semantic segmentation (ESS) is a funda-
mental yet challenging task for event camera sensing. The
difficulties in interpreting and annotating event data limit
its scalability. While domain adaptation from images to
event data can help to mitigate this issue, there exist data
representational differences that require additional effort to
resolve. In this work, for the first time, we synergize infor-
mation from image, text, and event-data domains and intro-
duce OpenESS to enable scalable ESS in an open-world,
annotation-efficient manner. We achieve this goal by trans-
ferring the semantically rich CLIP knowledge from image-
text pairs to event streams. To pursue better cross-modality
adaptation, we propose a frame-to-event contrastive dis-
tillation and a text-to-event semantic consistency regular-
ization. Experimental results on popular ESS benchmarks
showed our approach outperforms existing methods. No-

tably, we achieve 53.93% and 43.31% mIoU on DDD17 and
DSEC-Semantic without using either event or frame labels.

1. Introduction

Event cameras, often termed bio-inspired vision sensors,
stand distinctively apart from traditional frame-based cam-
eras and are often merited by their low latency, high dy-
namic range, and low power consumption [28, 44, 76]. The
realm of event-based vision perception, though nascent, has
rapidly evolved into a focal point of contemporary research
[99]. Drawing parallels with frame-based perception and
recognition methodologies, a plethora of task-specific ap-
plications leveraging event cameras have burgeoned [25].

Event-based semantic segmentation (ESS) emerges as
one of the core event perception tasks and has gained in-
creasing attention [2, 6, 38, 79]. ESS inherits the challenges
of traditional image segmentation [11, 12, 19, 39, 58], while
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also contending with the unique properties of event data
[2], which opens up a plethora of opportunities for explo-
ration. Although accurate and efficient dense predictions
from event cameras are desirable for practical applications,
the learning and annotation of the sparse, asynchronous, and
high-temporal-resolution event streams pose several chal-
lenges [47, 49, 61]. Stemming from the image segmentation
community, existing ESS models are trained on densely an-
notated events within a fixed and limited set of label map-
ping [2, 79]. Such closed-set learning from expensive anno-
tations inevitably constrains the scalability of ESS systems.

An obvious approach will be to make use of the image
domain and transfer knowledge to event data for the same
vision tasks. Several recent attempts [30, 61, 79] resort to
unsupervised domain adaptation to avoid the need for paired
image and event data annotations for training. These meth-
ods demonstrate the potential of leveraging frame annota-
tions to train a segmentation model for event data. How-
ever, transferring knowledge across frames and events is
not straightforward and requires intermediate representa-
tions such as voxel grids, frame-like reconstructions, and
bio-inspired spikes. Meanwhile, it is also costly to annotate
dense frame labels for training, which limits their usage.

A recent trend inclines to the use of multimodal founda-
tion models [13, 50, 67, 69, 94] to train task-specific mod-
els in an open-vocabulary and zero-shot manner, removing
dependencies on human annotations. This paper continues
such a trend. We propose a novel open-vocabulary frame-
work for ESS, aiming at transferring pre-trained knowledge
from both image and text domains to learn better represen-
tations of event data for the dense scene understanding task.
Observing the large domain gap in between heterogeneous
inputs, we design two cross-modality representation learn-
ing objectives that gradually align the event streams with
images and texts. As shown in Fig. 1, given raw events
and text prompts as the input, the learned feature represen-
tations from our OpenESS framework exhibit promising re-
sults for known and unknown class segmentation and can
be extended to more open-ended texts such as “adjectives”,
“fine-grained”, and “coarse-grained” descriptions.

To sum up, this work poses key contributions as follows:
• We introduce OpenESS, a versatile event-based seman-

tic segmentation framework capable of generating open-
world dense event predictions given arbitrary text queries.

• To the best of our knowledge, this work represents the
first attempt at distilling large vision-language models to
assist event-based semantic scene understanding tasks.

• We propose a frame-to-event (F2E) contrastive distilla-
tion and a text-to-event (T2E) consistency regularization
to encourage effective cross-modality knowledge transfer.

• Our approach sets up a new state of the art in annotation-
free, annotation-efficient, and fully-supervised ESS set-
tings on DDD17-Seg and DSEC-Semantic benchmarks.

2. Related Work
Event-based Vision. The microsecond-level temporal res-
olution, high dynamic range (typically 140 dB vs. 60 dB
of standard cameras), and power consumption efficiency of
event cameras have posed a paradigm shift from traditional
frame-based imaging [25, 60, 77, 108]. A large variety of
event-based recognition, perception, localization, and re-
construction tasks have been established, encompassing ob-
ject recognition [18, 29, 48, 68], object detection [27, 31,
103, 109], depth estimation [17, 36, 42, 62, 65, 70], opti-
cal flow [7, 20, 33, 34, 53, 81, 105], intensity-image recon-
struction [23, 24, 73, 98, 107], visual odometry and SLAM
[43, 56, 72], stereoscopic panoramic imaging [4, 75], etc. In
this work, we focus on the recently-emerged task of event-
based semantic scene understanding [2, 79]. Such a pur-
suit is anticipated to tackle sparse, asynchronous, and high-
temporal-resolution events for dense predictions, which is
crucial for safety-critical in-drone or in-vehicle perceptions.
Event-based Semantic Segmentation. The focus of ESS is
on categorizing events into semantic classes for enhancing
scene interpretation. Alonso et al. [2] contributed the first
benchmark based on DDD17 [5]. Subsequent works are tai-
lored to improve the accuracy while mitigating the need for
extensive event annotations [30]. EvDistill [84] and DTL
[83] utilized aligned frames to enhance event-based learn-
ing. EV-Transfer [61] and ESS [79] leveraged domain adap-
tation to transfer knowledge from existing image datasets
to events. Recently, HALSIE [6] and HMNet [38] inno-
vated ESS in cross-domain feature synthesis and memory-
based event encoding. Another line of research pursues
to use of spiking neural networks for energy-efficient ESS
[10, 49, 63, 90]. In this work, different from previous pur-
suits, we aim to train ESS models in an annotation-free
manner by distilling pre-trained vision-language models,
hoping to address scalability and annotation challenges.
Open-Vocabulary Learning. Recent advances in vision-
language models open up new possibilities for visual per-
ceptions [13, 88, 106]. Such trends encompass image-based
zero-shot and open-vocabulary detection [26, 52, 89, 96], as
well as semantic [35, 51, 55, 97, 100], instance [45, 87], and
panoptic [21, 41, 93] segmentation. As far as we know, only
three works studied the adaptation of CLIP for event-based
recognition. EventCLIP [92] proposed to convert events
to a 2D grid map and use an adapter to align event fea-
tures with CLIP’s knowledge. E-CLIP [102] uses a hier-
archical triple contrastive alignment that jointly unifies the
event, image, and text feature embedding. Ev-LaFOR [18]
designed category-guided attraction and category-agnostic
repulsion losses to bridge event with CLIP. Differently, we
present the first attempt at adapting CLIP for dense pre-
dictions on sparse and asynchronous event streams. Our
work is also close to superpixel-driven contrastive learn-
ing [46, 74], where pre-processed superpixels are used to
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Figure 2. Architecture overview of the OpenESS framework. We distill off-the-shelf knowledge from vision-languages models to event
representations (cf . Sec. 3.1). Given a calibrated event Ievt and a frame Iimg , we extract their features from the event network Fevt

θe and the
densified CLIP’s image encoder Fclip

θc
, which are then combined with the text embedding from CLIP’s text encoder F txt

θt for open-world
prediction (cf . Sec. 3.2). To better serve for cross-modality knowledge transfer, we propose a frame-to-event (F2E) contrastive objective
(cf . Sec. 3.3) via superpixel-driven distillation and a text-to-event (T2E) consistency objective (cf . Sec. 3.4) via scene-level regularization.

establish contrastive objectives with modalities from other
tasks, e.g., point cloud understanding [57], remote sensing
[37], medical imaging [82], and so on. In this work, we
propose OpenESS to explore superpixel-to-event represen-
tation learning. Extensive experiments verify that such an
approach is promising for annotation-efficient ESS.

3. Methodology
Our study serves as an early attempt at leveraging vision-
language foundation models like CLIP [69] to learn mean-
ingful event representations without accessing ground-truth
labels. We start with a brief introduction of the CLIP model
(cf . Sec. 3.1), followed by a detailed elaboration on our pro-
posed open-vocabulary ESS (cf . Sec. 3.2). To encourage ef-
fective cross-modal event representation learning, we intro-
duce a frame-to-event contrastive distillation (cf . Sec. 3.3)
and a text-to-event consistency regularization (cf . Sec. 3.4).
An overview of the OpenESS framework is shown in Fig. 2.

3.1. Revisiting CLIP

CLIP [69] learns to associate images with textual descrip-
tions through a contrastive learning framework. It leverages
a dataset of 400 million image-text pairs, training an im-
age encoder (based on a ResNet [39] or Vision Transformer
[22]) and a text encoder (using a Transformer architecture
[80]) to project images and texts into a shared embedding
space. Such a training paradigm enables CLIP to perform
zero-shot classification tasks, identifying images based on

textual descriptions without specific training on those cate-
gories. To achieve annotation-free classification on a cus-
tom dataset, one needs to combine class label mappings
with hand-crafted text prompts as the input to generate the
text embedding. In this work, we aim to leverage the seman-
tically rich CLIP feature space to assist open-vocabulary
dense prediction on sparse and asynchronous event streams.

3.2. Open-Vocabulary ESS

Inputs. Given a set of N event data acquired by an event
camera, we aim to segment each event ei among the tem-
porally ordered event streams εi, which are encoded by
the pixel coordinates (xi,yi), microsecond-level timestamp
ti, and the polarity pi ∈ {−1,+1} which indicates ei-
ther an increase or decrease of the brightness. Each event
camera pixel generates a spike whenever it perceives a
change in logarithmic brightness that surpasses a predeter-
mined threshold. Meanwhile, a conventional camera cap-
tures gray-scale or color frames Iimg

i ∈ R3×H×W which
are spatially aligned and temporally synchronized with the
events or can be aligned and synchronized to events via sen-
sor calibration, where H and W are the spatial resolutions.
Event Representations. Due to the sparsity, high tempo-
ral resolution, and asynchronous nature of event streams, it
is common to convert raw events εi into more regular rep-
resentations Ievti ∈ RC×H×W as the input to the neural
network [25], where C denotes the number of embedding
channels which is depended on the event representations
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themselves. Some popular choices of such embedding in-
clude spatiotemporal voxel grids [29, 104, 105], frame-like
reconstructions [73], and bio-inspired spikes [49]. We in-
vestigate these three methods and show an example of tak-
ing voxel grids as the input in Fig. 2. More analyses and
comparisons using reconstructions and spikes are in later
sections. Specifically, with a predefined number of events,
each voxel grid is built from non-overlapping windows as:

Ievti =
∑
ej∈εi

pjδ(xj − x)δ(yj − y)max{1− |t∗j − t|, 0},

(1)
where δ is the Kronecker delta function; t∗j = (B−1)

tj−t0
∆T

is the normalized event timestamp with B as the number of
temporal bins in an event stream; ∆T is the time window
and t0 denotes the time of the first event in the window.
Cross-Modality Encoding. Let Fevt

θe
: RC×H×W 7→

RD1×H1×W1 be an event-based segmentation network with
trainable parameters θe, which takes as input an event
embedding Ievti and outputs a D1-dimensional feature of
downsampled spatial sizes H1 and W1. Meanwhile, we
integrate CLIP’s image encoder Fclip

θc
: R3×H×W 7→

RD2×H2×W2 into our framework and keep the parameters
θc fixed. The output is a D2-dimensional feature of sizes
H2 and W2. Our motivation is to transfer general knowl-
edge from Fclip

θc
to Fevt

θe
, such that the event branch can

learn useful representations without using dense event an-
notations. To enable open-vocabulary ESS predictions, we
leverage CLIP’s text encoder F txt

θt
with pre-trained param-

eters θt. The input of F txt
θt

comes from predefined text
prompt templates and the output will be a text embedding
extracted from CLIP’s rich semantic space.
Densifications. CLIP was originally designed for image-
based recognition tasks and does not provide per-pixel out-
puts for dense predictions. Several recent attempts explored
the adaptation from global, image-level recognition to local,
pixel-level prediction, via either model structure modifica-
tion [100] or fine-tuning [51, 71, 97]. The former directly
reformulates the value-embedding layer in CLIP’s image
encoder, while the latter uses semantic labels to gradually
adapt the pre-trained weights to generate dense predictions.
In this work, we implement both solutions to densify CLIP’s
outputs and compare their performances in our experiments.

Up until now, we have presented a preliminary frame-
work capable of conducting open-vocabulary ESS by lever-
aging knowledge from the CLIP model. However, due to
the large domain gap between the event and image modali-
ties, a naı̈ve adaptation is sub-par in tackling the challenging
event-based semantic scene understanding task.

3.3. F2E: Frame-to-Event Contrastive Distillation

Since our objective is to encourage effective cross-modality
knowledge transfer for holistic event scene perception, it

thus becomes crucial to learn meaningful representations
for both thing and stuff classes, especially their boundary
information. However, the sparsity and asynchronous na-
ture of event streams inevitably impede such objectives.
Superpixel-Driven Knowledge Distillation. To pursue a
more informative event representation learning at higher
granularity, we propose to first leverage calibrated frames
to generate coarse, instance-level superpixels and then dis-
till knowledge from a pre-trained image backbone to the
event segmentation network. Superpixel groups pixels into
conceptually meaningful atomic regions, which can be used
as the basis for higher-level perceptions [1, 54, 85]. The
semantically coherent frame-to-event correspondences can
thus be found using pre-processed or online-generated su-
perpixels. Such correspondences tend to bridge the sparse
events to dense frame pixels in a holistic manner without
involving extra training or annotation efforts.
Superpixel & Superevent Generation. We resort to the
following two ways of generating the superpixels. The first
way is to leverage heuristic methods, e.g. SLIC [1], to effi-
ciently groups pixels from frame Iimg

i into a total of Mslic

segments with good boundary adherence and regularity as
Ispi = {I1

i , I2
i , ..., I

Mslic
i }, where Mslic is a hyperparame-

ter that needs to be adjusted based on the inputs. The gener-
ated superpixels satisfy I1

i ∪I2
i ∪...∪I

Mslic
i = {1, 2, ...,H×

W}. For the second option, we use the recent Segment Any-
thing Model (SAM) [50] which takes Iimg

i as the input and
outputs Msam class-agnostic masks. For simplicity, we use
M to denote the number of superpixels used during knowl-
edge distillation, i.e., {Ispi = {I1

i , ..., Ik
i }|k = 1, ...,M}

and show more comparisons between SLIC [1] and SAM
[50] in later sections. Since Ievti and Iimg

i have been aligned
and synchronized, we can group events from Ievti into su-
perevents {V sp

i = {V1
i , ...,V l

i}|l = 1, ...,M} by using the
known event-pixel correspondences.
Frame-to-Event Contrastive Learning. To encourage bet-
ter superpixel-level knowledge transfer, we leverage a pre-
trained image network F img

θf
: R3×H×W 7→ RD3×H3×W3

as the teacher and distill information from it to the event
branch Fevt

θe
. The parameters of F img

θf
, which can come

from either CLIP [69] or other pretext task pre-trained back-
bones such as [8, 15, 64], are kept frozen during the distilla-
tion. With Fevt

θe
and F img

θf
, we generate the superevent and

superpixel features as follows:

fevti =
1

|V sp
i |

∑
l∈V sp

i

Pevt
ωe

( Fevt
θe (Ievti )l ) , (2)

f img
i =

1

|Ispi |
∑

k∈Isp
i

Pimg
ωf

( F img
θf

(Iimg
i )k ) , (3)

where Pevt
ωe

and Pimg
ωf

are projection layers with trainable
parameters ωe and ωf , respectively, for the event branch
and frame branch. In the actual implementation, Pevt

ωe
and
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Pimg
ωf

consist of linear layers which map the D1- and D3-
dimensional event and frame features to the same shape.
The following contrastive learning objective is applied to
the event prediction and the frame prediction:

LF2E(θe, ωe, ωf ) = −
∑
i

log

 e(⟨f
evt
i ,f img

i ⟩/τ1)∑
j ̸=i e

(⟨fevt
i ,f img

j ⟩/τ1)

 ,

(4)

where ⟨·, ·⟩ denotes the scalar product between the su-
perevent and superpixel embedding; τ1 > 0 is a temperature
coefficient that controls the pace of knowledge transfer.
Role in Our Framework. Our F2E contrastive distillation
establishes an effective pipeline for transferring superpixel-
level knowledge from dense, visual informative frame pix-
els to sparse, irregular event streams. Since we are targeting
the semantic segmentation task, the learned event represen-
tations should be able to reason in terms of instances and
instance parts at and in between semantic boundaries.

3.4. T2E: Text-to-Event Consistency Regularization

Although the aforementioned frame-to-event knowledge
transfer provides a simple yet effective way of transferring
off-the-shelf knowledge from frames to events, the opti-
mization objective might encounter unwanted conflicts.
Intra-Class Optimization Conflict. During the model pre-
training, the superpixel-driven contrastive loss takes the cor-
responding superevent and superpixel pair in a batch as the
positive pair, while treating all remaining pairs as negative
samples. Since heuristic superpixels only provide a coarse
grouping of conceptually coherent segments (kindly refer
to our Appendix for more detailed analysis), it is thus in-
evitable to encounter self-conflict during the optimization.
That is to say, from hindsight, there is a chance that the
superpixels belonging to the same semantic class could be
involved in both positive and negative samples.
Text-Guided Semantic Regularization. To mitigate the
possible self-conflict in Eq. (4), we propose a text-to-event
semantic consistency regularization mechanism that lever-
ages CLIP’s text encoder to generate semantically more
consistent text-frame pairs {Iimg

i , Ti}, where Ti denotes the
text embedding extracted from F txt

θt
. Such a paired relation-

ship can be leveraged via CLIP without additional training.
We then construct event-text pairs {Ievti , Ti} by propagat-
ing the alignment between events and frames. Specifically,
the paired event and text features are extracted as follows:

hevt
i = Qevt

ωq
(Fevt

θe (Ievti )) , htxt
i = F txt

θt (Ti) , (5)

where Qevt
ωq

is a projection layer with trainable parameters
ωq , which is similar to that of Pevt

ωe
. Now assume there are

a total of Z classes in the event dataset, the following objec-
tive is applied to encourage the consistency regularization:

LT2E(θe, ωq) = (6)

−
Z∑

z=1

log

[ ∑
Ti∈z,Ievt

i
e(⟨h

evt
i ,htxt

i ⟩/τ2)∑
j ̸=i,Ti∈z,Ti ̸∈Ievt

i
e(⟨h

evt
j ,htxt

i ⟩/τ2)

]
, (7)

where τ2 > 0 is a temperature coefficient that controls the
pace of knowledge transfer. The overall optimization ob-
jective of our OpenESS framework is to minimize L =
LF2E +αLT2E , where α is a weight balancing coefficient.
Role in Our Framework. Our T2E semantic consistency
regularization provides a global-level alignment to compen-
sate for the possible self-conflict in the superpixel-driven
frame-to-event contrastive learning. As we will show in the
following sections, the two objectives work synergistically
in improving the performance of open-vocabulary ESS.
Inference-Time Configuration. Our OpenESS framework
is designed to pursue segmentation accuracy in annotation-
free and annotation-efficient manners, without sacrificing
event processing efficiency. As can be seen from Fig. 2,
after the cross-modality knowledge transfer, only the event
branch will be kept. This guarantees that there will be no
extra latency or power consumption added during the infer-
ence, which is in line with the practical requirements.

4. Experiments
4.1. Settings

Datasets. We conduct experiments on two popular ESS
datasets. DDD17-Seg [2] is a widely used ESS benchmark
consisting of 40 sequences acquired by a DAVIS346B. In
total, 15950 training and 3890 testing events of spatial size
352 × 200 are used, along with synchronized gray-scale
frames provided by the DAVIS camera. DSEC-Semantic
[79] provides semantic labels for 11 sequences in the DSEC
[32] dataset. The training and testing splits contain 8082
and 2809 events of spatial size 640× 440, accompanied by
color frames (with sensor calibration parameters available)
recorded at 20Hz. More details are in the Appendix.
Benchmark Setup. In addition to the conventional fully-
supervised ESS, we establish two open-vocabulary ESS set-
tings for annotation-free and annotation-efficient learning,
respectively. The former aims to train an ESS model with-
out using any dense event labels, while the latter assumes
an annotation budget of 1%, 5%, 10%, or 20% of events in
the training set. We treat the first few samples from each
sequence as labeled and the remaining ones as unlabeled.
Implementation Details. Our framework is implemented
using PyTorch [66]. Based on the use of event represen-
tations, we form frame2voxel, frame2recon, and
frame2spike settings, where the event branch will adopt
E2VID [73], ResNet-50 [39], and SpikingFCN [49], respec-
tively, with an AdamW [59] optimizer with cosine learning
rate scheduler. The frame branch uses a pre-trained ResNet-
50 [8, 9, 15] and is kept frozen. The number of superpixels
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Table 1. Comparative study of existing ESS approaches under
the annotation-free, fully-supervised, and open-vocabulary ESS
settings, respectively, on the test sets of the DDD17-Seg [5] and
DSEC-Semantic [79] datasets. All scores are in percentage (%).
The best score from each learning setting is highlighted in bold.

Method Venue DDD17 DSEC
Acc mIoU Acc mIoU

Annotation-Free ESS
MaskCLIP [100] ECCV’22 81.29 31.90 58.96 21.97

FC-CLIP [97] NeurIPS’23 88.66 51.12 79.20 39.42
OpenESS Ours 90.51 53.93 86.18 43.31

Fully-Supervised ESS
Ev-SegNet [2] CVPRW’19 89.76 54.81 88.61 51.76

E2VID [73] TPAMI’19 85.84 48.47 80.06 44.08
Vid2E [30] CVPR’20 90.19 56.01 - -

EVDistill [84] CVPR’21 - 58.02 - -
DTL [83] ICCV’21 - 58.80 - -

PVT-FPN [86] ICCV’21 94.28 53.89 - -
SpikingFCN [49] NCE’22 - 34.20 - -
EV-Transfer [61] RA-L’22 51.90 15.52 63.00 24.37

ESS [79] ECCV’22 88.43 53.09 84.17 45.38
ESS-Sup [79] ECCV’22 91.08 61.37 89.37 53.29
P2T-FPN [91] TPAMI’23 94.57 54.64 - -

EvSegformer [47] TIP’23 94.72 54.41 - -
HMNet-B [38] CVPR’23 - - 88.70 51.20
HMNet-L [38] CVPR’23 - - 89.80 55.00

HALSIE [6] WACV’24 92.50 60.66 89.01 52.43

Open-Vocabulary ESS
MaskCLIP [100] ECCV’22 90.50 61.27 89.81 55.01

FC-CLIP [97] NeurIPS’23 90.68 62.01 89.97 55.67
OpenESS Ours 91.05 63.00 90.21 57.21

involved in the calculation of F2E contrastive loss is set to
100 for DSEC-Semantic [79] and 25 for DDD17-Seg [2].
For evaluation, we extract the feature embedding for each
text prompt offline from a frozen CLIP text encoder using
pre-defined templates. For linear probing, the pre-trained
event network Fevt

θe
is kept frozen, followed by a trainable

point-wise linear classification head. Due to space limits,
kindly refer to our Appendix for additional details.

4.2. Comparative Study

Annotation-Free ESS. In Tab. 1, we compare OpenESS
with MaskCLIP [100] and FC-CLIP [97] in the absence
of event labels. Our approach achieves zero-shot ESS
results of 53.93% and 43.31% on DDD17-Seg [2] and
DSEC-Semantic [79], much higher than the two competi-
tors and even comparable to some fully-supervised meth-
ods. This validates the effectiveness of conducting ESS in
an annotation-free manner for practical usage. Meanwhile,
we observe that a fine-tuned CLIP encoder [97] could gen-
erate much better semantic predictions than the structure
adaptation method [100], as mentioned in Sec. 3.2.
Comparisons to State-of-the-Art Methods. As shown in
Tab. 1, the proposed OpenESS sets up several new state-of-
the-art results in the two ESS benchmarks. Compared to the
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Figure 3. Ablation study on the number of superpixels (provided
by either SAM [50] or SLIC [1]) involved in calculating the frame-
to-event contrastive loss. Models after pre-training are fine-tuned
with 1% annotations. All mIoU scores are in percentage (%).

previously best-performing methods, OpenESS is 1.63%
and 2.21% better in terms of mIoU scores on DDD17-Seg
[2] and DSEC-Semantic [79], respectively. It is worth men-
tioning that in addition to the performance improvements,
our approach can generate open-vocabulary predictions that
are beyond the closed sets of predictions of existing meth-
ods, which is more in line with the practical usage.
Annotation-Efficient Learning. We establish a compre-
hensive benchmark for ESS under limited annotation sce-
narios and show the results in Tab. 3. As can be seen, the
proposed OpenESS contributes significant performance im-
provements over random initialization under linear probing,
few-shot fine-tuning, and fully-supervised learning settings.
Specifically, using either voxel grid or event reconstruction
representation, our approach achieves > 30% relative gains
in mIoU on both datasets under liner probing and around
2% higher than prior art in mIoU with full supervisions. We
also observe that using voxel grids to represent raw event
streams tends to yield overall better ESS performance.
Qualitative Assessment. Fig. 4 provides visual compar-
isons between OpenESS and other approaches on DSEC-
Semantic [79]. We find that OpenESS tends to predict more
consistent semantic information from sparse and irregular
event inputs, especially at instance boundaries. We include
more visual examples and failure cases in the Appendix.
Open-World Predictions. One of the core advantages of
OpenESS is the ability to predict beyond the fixed label set
from the original training sets. As shown in Fig. 1, our ap-
proach can take arbitrary text prompts as inputs and gen-
erate semantically coherent event predictions without using
event labels. This is credited to the alignment between event
features and CLIP’s knowledge in T2E. Such a flexible way
of prediction enables a more holistic event understanding.
Other Representation Learning Approaches. In Tab. 2,
we compare OpenESS with recent reconstruction-based [3,
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Background Building Fence Person Pole Road Sidewalk Vegetation Car Wall Traffic-Sign

Event Reconstruction MaskCLIP ESS-Sup OpenESSFC-CLIP GT

Figure 4. Qualitative comparisons of state-of-the-art ESS approaches on the test set of DSEC-Semantic [79]. Each color corresponds to
a distinct semantic category. GT denotes the ground truth semantic maps. Best viewed in colors and zoomed-in for additional details.

Table 2. Comparative study of different representation learning
methods applied on event data. OV denotes whether supporting
open-vocabulary predictions. All mIoU scores are in percentage
(%). The best score from each dataset is highlighted in bold.

Method Venue Backbone OV DDD17 DSEC

Random - ViT-S/16 ✗ 48.76 40.53
MoCoV3 [16] ICCV’21 ViT-S/16 ✗ 53.65 49.21

IBoT [101] ICLR’22 ViT-S/16 ✗ 49.94 42.53
ECDP [95] ICCV’23 ViT-S/16 ✗ 54.66 47.91

Random - ViT-B/16 ✗ 43.89 38.24
BeiT [3] ICLR’22 ViT-B/16 ✗ 52.39 46.52

MAE [40] CVPR’22 ViT-B/16 ✗ 52.36 47.56

Random - ResNet-50 ✗ 56.96 57.60
SimCLR [14] ICML’20 ResNet-50 ✗ 57.22 59.06

ECDP [95] ICCV’23 ResNet-50 ✗ 59.15 59.16

Random - ResNet-50 ✗ 55.56 52.86
OpenESS Ours ResNet-50 ✓ 57.01 55.01

Random - E2VID ✗ 61.06 54.96
OpenESS Ours E2VID ✓ 63.00 57.21

40, 95, 101] and contrastive learning-based [14, 16] pre-
training methods. As can be seen, the proposed OpenESS
achieves competitive results over existing approaches. It is
worth highlighting again that our framework distinct from
prior arts by supporting open-vocabulary learning.

4.3. Ablation Study

Cross-Modality Representation Learning. Tab. 4 pro-
vides a comprehensive ablation study on the frame-to-event
(F2E) and text-to-event (T2E) learning objectives in Ope-
nESS using three event representations. We observe that
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Figure 5. Cross-dataset representation learning results of com-
paring OpenESS pre-training using in-distribution (ID) and out-
of-distribution (OOD) data in-between the DDD17-Seg [5] and
DSEC-Semantic [79] datasets. Models after pre-training are fine-
tuned with 1%, 5%, 10%, and 20% annotations, respectively.

both F2E and T2E contribute to an overt improvement over
random initialization under linear probing and few-shot
fine-tuning settings, which verifies the effectiveness of our
proposed approach. Once again, we find that the voxel grids
tend to achieve better performance than other representa-
tions. The spike-based methods [49], albeit being compu-
tationally more efficient, show sub-par performance com-
pared to voxel grids and reconstructions.

Superpixel Generation. We study the utilization of SLIC
[1] and SAM [50] in our frame-to-event contrastive distilla-
tion and show the results in Fig. 3. Using either frame net-
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Table 3. Comparative study of different open-vocabulary semantic segmentation methods [97, 100] under the linear probing (LP) and
few-shot fine-tuning, and full supervision (Full) settings, respectively, on the test sets of the DDD17-Seg [5] and DSEC-Semantic [79]
datasets. All mIoU scores are given in percentage (%). The best mIoU scores from each learning configuration are highlighted in bold.

Method Configuration DSEC-Semantic DDD17-Seg
LP 1% 5% 10% 20% Full LP 1% 5% 10% 20% Full

Random Voxel Grid 6.70 26.62 31.22 33.67 41.31 54.96 12.30 52.13 54.87 58.66 59.52 61.06

MaskCLIP [100] 33.08 33.89 37.03 38.83 42.40 55.01 31.91 53.91 56.27 59.32 59.97 61.27
FC-CLIP [97] Voxel Grid 43.00 39.12 43.71 44.09 47.77 55.67 54.07 56.38 58.50 60.05 60.85 62.01

OpenESS (Ours) frame2voxel 44.26 41.41 44.97 46.25 48.28 57.21 55.61 57.58 59.07 61.03 61.78 63.00
Improve ↑ +33.56 +14.79 +13.75 +12.58 +6.97 +2.25 +43.31 +5.45 +4.20 +2.37 +2.26 +1.94

Random Reconstruction 6.22 23.95 30.42 34.11 39.25 52.86 13.89 45.30 52.03 53.02 54.05 55.56

MaskCLIP [100] 27.09 30.73 36.33 40.13 43.37 52.97 29.81 49.02 53.65 54.11 54.75 56.12
FC-CLIP [97] Reconstruction 40.08 38.99 43.34 45.35 47.18 53.05 52.17 51.01 54.09 54.99 55.05 56.34

OpenESS (Ours) frame2recon 44.08 43.17 45.58 48.94 49.74 55.01 53.61 52.02 55.11 55.66 56.07 57.01
Improve ↑ +37.86 +19.22 +15.16 +14.83 +10.49 +2.15 +39.72 +6.72 +3.08 +2.64 +2.02 +1.45

Table 4. Ablation study of OpenESS under linear probing (LP)
and few-shot fine-tuning settings from three learning configura-
tions on the test set of DDD17-Seg [5]. F2E denotes the frame-to-
event contrastive learning. T2E denotes the text-to-event semantic
regularization. All mIoU scores are given in percentage (%).

Configuration F2E T2E DDD17-Seg
LP 1% 5% 10% 20%

Voxel Grid Random 12.30 52.13 54.87 58.66 59.52

frame2voxel
✓ 52.60 55.41 57.07 59.77 60.21

✓ 54.11 56.77 58.95 60.12 60.99
✓ ✓ 55.61 57.58 59.07 61.03 61.78

Reconstruction Random 13.89 45.30 52.03 53.02 54.05

frame2recon
✓ 50.21 50.96 53.67 54.21 54.92

✓ 52.62 51.63 54.27 55.00 55.17
✓ ✓ 53.61 52.02 55.11 55.66 56.07

Spike Random 12.04 10.01 20.02 25.81 26.03

frame2spike
✓ 15.07 14.31 21.77 26.89 27.07

✓ 16.11 14.67 22.61 27.97 29.01
✓ ✓ 16.27 14.89 23.54 28.51 29.98

works pre-trained by DINO [9], MoCoV2 [15], or SwAV
[8], the SAM-generated superpixels consistently exhibit
better performance for event representation learning. The
number of superpixels involved in calculating tends to af-
fect the effectiveness of contrastive learning. A preliminary
search to determine this hyperparameter is required. We
empirically find that setting M to 100 for DSEC-Semantic
[79] and 25 for DDD17-Seg [2] will likely yield the best
possible segmentation performance in our framework.
Cross-Dataset Knowledge Transfer. Since we are target-
ing annotation-free representation learning, it is thus intu-
itive to see the cross-dataset adaptation effect. As shown in
Fig. 5, pre-training on OOD datasets also brings appealing
improvements over the random initialization baseline. This
result highlights the importance of conducting representa-
tion learning for an effective transfer to downstream tasks.
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Figure 6. Single-modality OpenESS representation learning
study on the DSEC-Semantic [79] dataset. The results are from
models of random initialization (■□), recon2voxel pre-training
(■□), and frame2voxel pre-training (■□), respectively, after lin-
ear probing (LP) and annotation-efficient fine-tuning.

Framework with Event Camera Only. Lastly, we study
the scenario where the frame camera becomes unavailable.
We replace the input to the frame branch with event recon-
structions [73] and show the results in Fig. 6. Since the lim-
ited visual cues from the reconstruction tend to degrade the
quality of representation learning, its performance is sub-
par compared to the frame-based knowledge transfer.

5. Conclusion
In this work, we introduced OpenESS, an open-vocabulary
event-based semantic segmentation framework tailored to
perform open-vocabulary ESS in an annotation-efficient
manner. We proposed to encourage cross-modality repre-
sentation learning between events and frames using frame-
to-event contrastive distillation and text-to-event semantic
consistency regularization. Through extensive experiments,
we validated the effectiveness of OpenESS in tackling dense
event-based predictions. We hope this work could shed light
on the future development of more scalable ESS systems.
Acknowledgement. This work is under the programme DesCartes
and is supported by the National Research Foundation, Prime Min-
ister’s Office, Singapore, under its Campus for Research Excel-
lence and Technological Enterprise (CREATE) programme.
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A. Additional Implementation Details
In this section, we provide additional details to assist the
implementation and reproduction of the approaches in the
proposed OpenESS framework.

A.1. Datasets

In this study, we follow prior works [2, 38, 47, 79] by using
the DDD17-Seg [2] and DSEC-Semantic [79] datasets for
evaluating and validating the baselines, prior methods, and
the proposed OpenESS framework. Some specifications re-
lated to these two datasets are listed as follows.
• DDD17-Seg [2] serves as the first benchmark for ESS. It

is a semantic segmentation extension of the DDD17 [5]
dataset, which includes hours of driving data, capturing
a variety of driving conditions such as different times of
day, traffic scenarios, and weather conditions. Alonso and
Murillo [2] provide the semantic labels on top of DDD17
to enable event-based semantic segmentation. Specifi-
cally, they proposed to use the corresponding gray-scale
images along with the event streams to generate an ap-
proximated set of semantic labels for training, which was
proven effective in training models to segment directly
on event-based data. A three-step procedure is applied:
i) train a semantic segmentation model on the gray-scale
images in the Cityscapes dataset [19]; ii) Use the trained
model to label the gray-scale images in DDD17; and iii)

Conduct a post-processing step on the generated pseudo
labels, including class merging and image cropping. The
dataset specification is shown in Tab. 5. In total, there
are 15950 training and 3890 test samples in the DDD17-
Seg dataset. Each pixel is labeled across six seman-
tic classes, including flat, background, object,
vegetation, human, and vehicle. For each sam-
ple, we convert the event streams into a sequence of 20
voxel grids, each consisting of 32000 events and with a
spatial resolution of 352 × 200. For additional details of
this dataset, kindly refer to http://sensors.ini.
uzh.ch/news_page/DDD17.html.

• DSEC-Semantic [79] is a semantic segmentation exten-
sion of the DSEC (Driving Stereo Event Camera) dataset
[32]. DSEC is an extensive dataset designed for advanced
driver-assistance systems (ADAS) and autonomous driv-
ing research, with a particular focus on event-based vision
and stereo vision. Different from DDD17 [5], the DSEC
dataset combines data from event-based cameras and tra-
ditional RGB cameras. The inclusion of event-based
cameras (which capture changes in light intensity) along-
side regular cameras provides a rich, complementary data
source for perception tasks. The dataset typically features
high-resolution images and event data, providing detailed
visual information from a wide range of driving condi-
tions, including urban, suburban, and highway environ-
ments, various weather conditions, and different times of
the day. This diversity is crucial for developing systems
that can operate reliably in real-world conditions. Based
on such a rich collection, Sun et al. [79] adopted a similar
pseudo labeling procedure as DDD17-Seg [2] and gener-
ated the semantic labels for eleven sequences in DSEC,
dubbed as DSEC-Semantic. The dataset specification is
shown in Tab. 6. In total, there are 8082 training and
2809 test samples in the DSEC-Semantic dataset. Each
pixel is labeled across eleven semantic classes, including
background, building, fence, person, pole,
road, sidewalk, vegetation, car, wall, and
traffic-sign. For each sample, we convert the event
streams into a sequence of 20 voxel grids, each consisting
of 100000 events and with a spatial resolution of 640 ×
440. For additional details of this dataset, kindly refer to
https://dsec.ifi.uzh.ch/dsec-semantic.

A.2. Text Prompts

To enable the conventional evaluation of our proposed
open-vocabulary approach on an event-based semantic
segmentation dataset, we need to use the pre-defined
class names as text prompts to generate the text embed-
ding. Specifically, we follow the standard templates [69]
when generating the embedding. The dataset-specific text
prompts defined in our framework are listed as follows.

• DDD17-Seg. There is a total of six semantic classes in
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Table 5. The specifications of the DDD17-Seg dataset [2].

- Training Test

Seq dir0 dir3 dir4 dir6 dir7 dir1

# Frames 11785 20051 41071 28411 58650 71680

# Events 5550 1320 6945 1140 995 3890

Resolution 352× 200 352× 200

# Classes 6 Classes 6 Classes

Table 6. The specifications of the DSEC-Semantic dataset [79].

- Training Test

Seq 00 a 01 a 02 a 04 a 05 a 06 a 07 a 08 a 13 a 14 c 15 a

# Frames 939 681 235 701 1753 1523 1463 787 379 1191 1239

# Events 933 675 229 695 1747 1517 1457 781 373 1185 1233

Resolution 640× 440 640× 440

# Classes 11 Classes 11 Classes

the DDD17-Seg dataset [2], with static and dynamic com-
ponents of driving scenes. Our defined text prompts of
this dataset are summarized in Tab. 7. For each semantic
class, we generate for each text prompt the text embed-
ding using the CLIP text encoder and then average the
text embedding of all text prompts as the final embedding
of this class.

• DSEC-Semantic. There is a total of eleven semantic
classes in the DSEC-Semantic dataset [79], ranging from
static and dynamic components of driving scenes. Our
defined text prompts of this dataset are summarized in
Tab. 8. For each semantic class, we generate for each text
prompt the text embedding using the CLIP text encoder
and then average the text embedding of all text prompts
as the final embedding of this class.

A.3. Superpixels

In image processing and computer vision, superpixels can
be defined as a scheme that groups pixels in an image into
perceptually meaningful atomic regions, which are used to
replace the rigid structure of the pixel grid [1]. Superpixels
provide a more natural representation of the image struc-
ture, often leading to more efficient and effective image pro-
cessing. Here are some of their key aspects:
• Grouping Pixels. Superpixels are often formed by clus-

tering pixels based on certain criteria like color similarity,
brightness, texture, and other low-level patterns [1], or
more recently, semantics [50]. This results in contiguous
regions in the image that are more meaningful than indi-
vidual pixels for many applications [13, 57, 67, 94].

• Reducing Complexity. By aggregating pixels into su-
perpixels, the complexity of image data is significantly
reduced [78]. This reduction helps in speeding up subse-
quent image processing tasks, as algorithms have fewer
elements (superpixels) to process compared to the poten-
tially millions of pixels in an image.

• Preserving Edges. One of the primary goals of super-
pixel segmentation is to preserve important image edges.
Superpixels often adhere closely to the boundaries of ob-
jects in the image, making them useful for tasks that rely
on accurate edge information, like object recognition and
scene understanding.
In this work, we propose to first leverage calibrated

frames to generate coarse, instance-level superpixels and
then distill knowledge from a pre-trained image backbone
to the event segmentation network. Specifically, we resort
to the following two ways to generate the superpixels.

• SLIC. The first way is to leverage the heuristic Sim-
ple Linear Iterative Clustering (SLIC) approach [1] to
efficiently group pixels from frame Iimg

i into a to-
tal of Mslic segments with good boundary adherence
and regularity. The superpixels are defined as Ispi =

{I1
i , I2

i , ..., I
Mslic
i }, where Mslic is a hyperparameter

that needs to be adjusted based on the inputs. The
generated superpixels satisfy I1

i ∪ I2
i ∪ ... ∪ IMslic

i =
{1, 2, ...,H × W}. Several examples of the SLIC-
generated superpixels are shown in the second row of
Fig. 7, where each of the color-coded patches represents
one distinct and semantically coherent superpixel.

• SAM. For the second option, we use the recent Seg-
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Table 7. The text prompts defined on the DDD17-Seg dataset [2] (6 classes) used for generating the CLIP text embedding.

DDD17 (6 classes)

# class text prompt

0 flat ‘road’, ‘driveable’, ‘street’, ‘lane marking’, ‘bicycle lane’, ‘roundabout lane’,
‘parking lane’, ‘terrain’, ‘grass’, ‘soil’, ‘sand’, ‘lawn’, ‘meadow’, ‘turf’

1 background ‘sky’, ‘building’

2 object ‘pole’, ‘traffic sign pole’, ‘traffic light pole’, ‘traffic light box’, ‘traffic-sign’,
‘parking-sign’, ‘direction-sign’

3 vegetation ‘vegetation’, ‘vertical vegetation’, ‘tree’, ‘tree trunk’, ‘hedge’, ‘woods’, ‘terrain’,
‘grass’, ‘soil’, ‘sand’, ‘lawn’, ‘meadow’, ‘turf’

4 human ‘person’, ‘pedestrian’, ‘walking people’, ‘standing people’, ‘sitting people’, ‘tod-
dler’

5 vehicle ‘car’, ‘jeep’, ‘SUV’, ‘van’, ‘caravan’, ‘truck’, ‘box truck’, ‘pickup truck’, ‘trailer’,
‘bus’, ‘public bus’, ‘train’, ‘vehicle-on-rail’, ‘tram’, ‘motorbike’, ‘moped’,
‘scooter’, ‘bicycle’

Table 8. The ext prompts defined on the DSEC-Semantic dataset [79] (11 classes) used for generating the CLIP text embedding.

DSEC-Semantic (11 classes)

# class text prompt

0 background ‘sky’

1 building ‘building’, ‘skyscraper’, ‘house’, ‘bus stop building’, ‘garage’, ‘carport’, ‘scaf-
folding’

2 fence ‘fence’, ‘fence with hole’

3 person ‘person’, ‘pedestrian’, ‘walking people’, ‘standing people’, ‘sitting people’, ‘tod-
dler’

4 pole ‘pole’, ‘electric pole’, ‘traffic sign pole’, ‘traffic light pole’

5 road ‘road’, ‘driveable’, ‘street’, ‘lane marking’, ‘bicycle lane’, ‘roundabout lane’,
‘parking lane’

6 sidewalk ‘sidewalk’, ‘delimiting curb’, ‘traffic island’, ‘walkable’, ‘pedestrian zone’

7 vegetation ‘vegetation’, ‘vertical vegetation’, ‘tree’, ‘tree trunk’, ‘hedge’, ‘woods’, ‘terrain’,
‘grass’, ‘soil’, ‘sand’, ‘lawn’, ‘meadow’, ‘turf’

8 car ‘car’, ‘jeep’, ‘SUV’, ‘van’, ‘caravan’, ‘truck’, ‘box truck’, ‘pickup truck’, ‘trailer’,
‘bus’, ‘public bus’, ‘train’, ‘vehicle-on-rail’, ‘tram’, ‘motorbike’, ‘moped’,
‘scooter’, ‘bicycle’

9 wall ‘wall’, ‘standing wall’

10 traffic-sign ‘traffic-sign’, ‘parking-sign’, ‘direction-sign’, ‘traffic-sign without pole’, ‘traffic
light box’

ment Anything Model (SAM) [50] which takes Iimg
i as

the input and outputs Msam class-agnostic masks. For
simplicity, we use M to denote the number of super-
pixels used during knowledge distillation, i.e., {Ispi =
{I1

i , ..., Ik
i }|k = 1, ...,M}. Several examples of the

SAM-generated superpixels are shown in the third row of

Fig. 7, where each of the color-coded patches represents
one distinct and semantically coherent superpixel.
We calculate the SLIC and SAM superpixel distribu-

tions on the training set of the DSEC-Semantic dataset [79]
and show the corresponding statistics in Fig. 8. As can
be observed, the SLIC-generated superpixels often contain
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Figure 7. Examples of superpixels generated by SLIC [1] (the 2nd row) and SAM [50] (the 3rd row). The parameter Mslic in the SLIC
algorithm is set to 100. Each colored patch represents one distinct and semantically coherent superpixel. Best viewed in colors.

(a) Histogram of SLIC-Generated Superpixels (b) Histogram of SAM-Generated Superpixels

Figure 8. The statistical distributions of superpixels generated by SLIC [1] (subfigure a) and SAM [50] (subfigure b).

more low-level visual cues, such as color similarity, bright-
ness, and texture. On the contrary, superpixels generated
by SAM exhibit clear semantic coherence and often depict
the boundaries of objects and backgrounds. As verified in
the main body of this paper, the semantically richer SAM
superpixels bring higher performance gains in our Frame-
to-Event Contrastive Learning framework.

Meanwhile, we provide more fine-grained examples of
the SLIC algorithm using different Mslic, i.e., 25, 50, 100,
150, and 200. The results are shown in Fig. 9. Specifically,

the number of superpixels Mslic should reflect the complex-
ity and detail of the image. For images with high detail
or complexity (like those with many objects or textures), a
larger Mslic can capture more of this detail. Conversely, for
simpler images, fewer superpixels might be sufficient. Usu-
ally, more superpixels mean smaller superpixels. Smaller
superpixels can adhere more closely to object boundaries
and capture finer details, but they might also capture more
noise. Fewer superpixels result in larger, more homoge-
neous regions but may lead to a loss of detail, especially
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Figure 9. Examples of superpixels generated by SLIC [1] with different numbers of superpixels Mslic (25, 50, 100, 150, and 200). Each
colored patch represents one distinct and semantically coherent superpixel. Best viewed in colors.

at the edges of objects. The choice also depends on the
specific application. For instance, in object detection or
segmentation tasks where boundary adherence is crucial,
a higher number of superpixels might be preferable. In
contrast, for tasks like image compression or abstraction,
fewer superpixels might be more appropriate. Often, the
optimal number of superpixels is determined empirically.

This involves experimenting with different values and eval-
uating the results based on the specific criteria of the task
or application. In our event-based semantic segmentation
task, we choose Mslic = 100 for our Frame-to-Event Con-
trastive Learning on the DSEC-Semantic dataset [79], and
Mslic = 25 on the DDD17-Seg dataset [2].

Since Ievti and Iimg
i have been aligned and synchro-
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nized, we can group events from Ievti into superevents
{V sp

i = {V1
i , ...,V l

i}|l = 1, ...,M} by using the known
event-pixel correspondences.

A.4. Backbones

As mentioned in the main body of this paper, we estab-
lish three open-vocabulary event-based semantic segmenta-
tion settings based on the use of three different event rep-
resentations, i.e., frame2voxel, frame2recon, and
frame2spike. It is worth noting that these three event
representations tend to have their own advantages.

We supplement additional implementation details re-
garding the used event representations as follows.
• Frame2Voxel. For the use of voxel grids as the event em-

bedding, we follow Sun et al. [79] by converting the raw
events εi into the regular voxel grids Ivoxi ∈ RC×H×W

as the input to the event-based semantic segmentation net-
work. This representation is intuitive and aligns well with
conventional event camera data processing techniques. It
is suitable for convolutional neural networks as it main-
tains spatial and temporal relationships. Specifically, with
a predefined number of events, each voxel grid is built
from non-overlapping windows as follows:
Ivoxi =

∑
ej∈εi

pjδ(xj−x)δ(yj−y)max{1−|t∗j −t|, 0},

(8)
where δ is the Kronecker delta function; t∗j = (B −
1)

tj−t0
∆T is the normalized event timestamp with B as the

number of temporal bins in an event stream; ∆T is the
time window and t0 denotes the time of the first event in
the window. It is worth noting that voxel grids can be
memory-intensive, especially for high-resolution sensors
or long-time windows. They might also introduce quan-
tization errors due to the discretization of space and time.
For additional details on the use of voxel grids, kindly
refer to https://github.com/uzh-rpg/ess.

• Frame2Recon. For the use of event reconstructions as
the event embedding, we follow Sun et al. [79] and Re-
becq et al. [73] by converting the raw events εi into the
regular frame-like event reconstructions Ireci ∈ RH×W

as the input to the event-based semantic segmentation net-
work. This can be done by accumulating events over short
time intervals or by using algorithms to interpolate or sim-
ulate frames. This approach is compatible with standard
image processing techniques and algorithms developed
for frame-based vision. It is more familiar to practitioners
used to working with conventional cameras. In this work,
we adopt the E2VID model [73] to generate the event re-
constructions. This process can be described as follows:

zreck = Ee2vid(I
vox
k , zreck−1), k = 1, ..., N, (9)

Ireci = De2vid(z
rec), (10)

where Ivoxk denotes the voxel grids as defined in Eq. (8);

Ee2vid and De2vid are the encoder of decoder of the E2VID
model [73], respectively. It is worth noting that event re-
constructions can lose the fine temporal resolution that
event cameras provide. They might also introduce arti-
facts or noise, especially in scenes with fast-moving ob-
jects or low event rates. For additional details on the
use of event reconstructions, kindly refer to https:
//github.com/uzh-rpg/rpg_e2vid.

• Frame2Spike. For the use of spikes as the event embed-
ding, we follow Kim et al. [49] by converting the raw
events εi into spikes Ispki ∈ RH×W as the input to the
event-based semantic segmentation network. The spike
representation keeps the data in its raw form – as indi-
vidual spikes or events. This representation preserves the
high temporal resolution of the event data and is highly
efficient in terms of memory and computation, especially
for sparse scenes. The rate coding is used as the spike
encoding scheme due to its reliable performance across
various tasks. Each pixel value with a random num-
ber ranging between [smin, smax] at every time step is
recorded, where smin and smax are the minimum and
maximum possible pixel intensities, respectively. If the
random number is greater than the pixel intensity, the
Poisson spike generator outputs a spike with amplitude
1. Otherwise, the Poisson spike generator does not yield
any spikes. The spikes in a certain time window are ac-
cumulated to generate a frame, where such frames will
serve as the input to the event-based semantic segmen-
tation network. It is worth noting that processing raw
spike data requires specialized algorithms, often inspired
by neuromorphic computing. It might not be suitable
for traditional image processing techniques and can be
challenging to interpret and visualize. For additional de-
tails on the use of spikes, kindly refer to https://
github.com/Intelligent-Computing-Lab-
Yale/SNN-Segmentation.

To sum up, each event representation has its unique char-
acteristics and is suitable for different applications or pro-
cessing techniques. Our proposed OpenESS framework is
capable of leveraging each of the above event representa-
tions for efficient and accurate event-based semantic seg-
mentation in an annotation-free and open-vocabulary man-
ner. Such a versatile and flexible way of learning verifies the
broader application potential of our proposed framework.

A.5. Evaluation Configuration

Following the convention, we use the Intersection-over-
Union (IoU) metric to measure the semantic segmentation
performance for each semantic class. The IoU score can be
calculated via the following equation:

IoU =
TP

TP + FP + FN
, (11)
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Table 9. The per-class segmentation results of annotation-free event-based semantic segmentation approaches on the test set of DSEC-
Semantic [79]. Scores reported are IoUs in percentage (%). For each semantic class, the best score in each column is highlighted in bold.
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Acc

Annotation-Free ESS
MaskCLIP [100] 21.97 26.45 52.59 0.20 0.04 4.19 65.76 2.96 48.02 40.67 0.67 0.08 58.96

FC-CLIP [97] 39.42 87.49 69.68 14.39 17.53 0.29 71.76 34.56 71.30 63.19 2.98 0.50 79.20
OpenESS (Ours) 43.31 92.53 74.22 11.96 0.00 0.41 87.32 55.09 74.23 64.25 7.98 8.47 86.18

Table 10. The per-class segmentation results of annotation-efficient event-based semantic segmentation approaches on the test set of
DSEC-Semantic [79]. All approaches adopted the frame2voxel representation. Scores reported are IoUs in percentage (%). For each
semantic class under each experimental setting, the best score in each column is highlighted in bold.
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Linear Probing
Random 6.70 7.85 3.37 0.00 0.00 0.00 38.60 0.00 23.83 0.01 0.00 0.00 37.94

MaskCLIP [100] 33.08 75.04 65.06 4.63 0.00 6.47 77.06 17.07 55.89 52.17 0.69 9.78 76.39
FC-CLIP [97] 43.00 92.53 72.59 12.43 0.02 0.00 88.14 52.84 71.92 64.02 10.54 7.95 86.00

OpenESS (Ours) 44.26 93.64 75.40 11.82 1.16 0.75 90.29 57.96 73.15 65.36 9.69 7.67 87.55

Fine-Tuning (1%)
Random 26.62 81.63 33.13 1.77 0.97 7.58 76.81 17.45 51.05 18.64 0.37 3.40 70.04

MaskCLIP [100] 33.89 87.56 53.24 2.34 0.60 8.92 81.71 25.76 59.37 42.56 2.52 8.24 77.79
FC-CLIP [97] 39.12 91.64 59.78 8.93 0.00 7.84 87.58 46.58 66.87 51.30 4.74 5.10 82.12

OpenESS (Ours) 41.41 93.01 74.01 3.21 10.78 14.58 84.50 34.78 69.82 55.12 4.47 11.21 84.41

Fine-Tuning (5%)
Random 31.22 77.13 50.32 12.36 1.26 0.00 86.03 41.22 21.48 50.67 2.96 0.04 71.38

MaskCLIP [100] 37.03 91.09 60.52 4.35 11.90 11.73 81.24 23.56 61.77 45.93 2.75 12.45 79.58
FC-CLIP [97] 43.71 92.91 71.21 10.84 0.00 5.60 90.11 57.54 71.30 61.04 11.41 8.81 86.38

OpenESS (Ours) 44.97 93.58 70.18 8.44 18.22 11.01 89.72 57.76 67.44 56.06 9.59 12.70 85.46

Fine-Tuning (10%)
Random 33.67 85.79 49.85 6.78 8.00 15.51 80.78 25.72 58.18 29.97 0.82 8.93 76.69

MaskCLIP [100] 38.83 92.34 69.96 3.64 5.85 12.98 82.23 23.61 66.39 53.23 3.47 13.46 82.36
FC-CLIP [97] 44.09 93.62 72.86 10.88 0.00 8.23 89.81 57.05 71.95 60.64 9.58 10.42 86.66

OpenESS (Ours) 46.25 93.92 73.34 8.13 18.61 15.41 89.03 52.56 71.76 61.71 9.99 14.26 86.72

Fine-Tuning (20%)
Random 41.31 91.08 67.90 4.68 17.90 17.41 85.11 43.24 66.62 43.95 5.03 11.55 82.99

MaskCLIP [100] 42.40 93.19 72.49 5.52 18.21 16.17 84.29 35.04 69.44 54.47 2.43 15.15 84.09
FC-CLIP [97] 47.77 91.05 70.90 7.04 21.10 14.84 91.13 64.28 71.62 61.73 13.25 18.55 86.95

OpenESS (Ours) 48.28 94.21 74.66 10.49 20.46 16.27 90.15 57.66 73.71 63.95 11.20 18.29 87.57

where TP (True Positive) denotes pixels correctly classi-
fied as belonging to the class; FP (False Positive) denotes
pixels incorrectly classified as belonging to the class; and
FN (False Negative) denotes pixels that belong to the class
but are incorrectly classified as something else.

The IoU metric measures the overlap between the pre-
dicted segmentation and the ground truth for a specific
class. It returns a value between 0 (no overlap) and 1 (per-

fect overlap). It is a way to summarize the mIoU values
for each class into a single metric that captures the overall
performance of the model across all classes, i.e., mean IoU
(mIoU). The mIoU of a given prediction is calculated as:

mIoU =
1

C

C∑
i=1

IoUi , (12)
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where C is the number of classes and IoUi denotes the
score of class i. mIoU provides a balanced measure since
each class contributes equally to the final score, regardless
of its size or frequency in the dataset. A higher mIoU indi-
cates better semantic segmentation performance. A score of
1 would indicate perfect segmentation for all classes, while
a score of 0 would imply an absence of correct predictions.
In this work, all the compared approaches adopt the same
mIoU calculation as in the ESS benchmarks [2, 79]. Addi-
tionally, we also report the semantic segmentation accuracy
(Acc) for the baselines and the proposed framework.

B. Additional Experimental Results

In this section, we provide the class-wise IoU scores for the
experiments conducted in the main body of this paper.

B.1. Annotation-Free ESS

The per-class zero-shot event-based semantic segmentation
results are shown in Tab. 9. For almost every seman-
tic class, we observe that the proposed OpenESS achieves
much higher IoU scores than MaskCLIP [100] and FC-
CLIP [97]. This validates the effectiveness of OpenESS for
conducting efficient and accurate event-based semantic seg-
mentation without using either the event or frame labels.

B.2. Annotation-Efficient ESS

The per-class linear probing event-based semantic segmen-
tation results are shown in the first block of Tab. 10 and
Tab. 11. Specifically, compared to the random initialization
baseline, a self-supervised pre-trained network always pro-
vides better features. The quality of representation learning
often determines the linear probing performance. The net-
work pre-trained using our frame-to-event contrastive distil-
lation and text-to-event consistency regularization tends to
achieve higher event-based semantic segmentation results
than MaskCLIP [100] and FC-CLIP [97]. Notably, such
improvements are holistic across almost all eleven semantic
classes in the dataset. These results validate the effective-
ness of the proposed OpenESS framework in tackling the
challenging event-based semantic segmentation task.

The per-class annotation-efficient event-based seman-
tic segmentation results of the frame2vodel and
frame2recon settings under 1%, 5%, 10%, and 20%
annotation budgets are shown in Tab. 10 and Tab. 11, re-
spectively. Similar to the findings and conclusions drawn
above, we observe clear superiority of the proposed Ope-
nESS framework over the random initialization, MaskCLIP
[100], and FC-CLIP [97] approaches. Such consistent
performance improvements validate again the effectiveness
and superiority of the proposed frame-to-event contrastive
distillation and text-to-event consistency regularization. We
hope our framework can lay a solid foundation for future

works in the established annotation-efficient event-based
semantic segmentation.

C. Qualitative Assessment
In this section, we provide sufficient qualitative examples
to further attest to the effectiveness and superiority of the
proposed framework.

C.1. Open-Vocabulary Examples

The key advantage of our proposed OpenESS framework is
its capability to leverage open-world vocabularies from the
CLIP text embedding space. Unlike prior event-based se-
mantic segmentation, which relies on pre-defined and fixed
categories, our open-vocabulary segmentation aims to un-
derstand and categorize image regions into a broader, poten-
tially unlimited range of categories. We provide more open-
vocabulary examples in Fig. 10. As can be observed, given
proper text prompts like “road”, “sidewalk”, and “build-
ing”, our proposed OpenESS framework is capable of gen-
erating semantically meaningful attention maps for depict-
ing the corresponding regions. Such a flexible framework
can be further adapted to new or unseen categories without
the need for extensive retraining, which is particularly bene-
ficial in dynamic environments where new objects or classes
might frequently appear. Additionally, the open-vocabulary
segmentation pipeline allows users to work with a more ex-
tensive range of objects and concepts, enhancing the user
experience and interaction capabilities.

C.2. Visual Comparisons

In this section, we provide more qualitative comparisons
of our proposed OpenESS framework over prior works
[79, 100] on the DSEC-Semantic dataset. Specifically, the
visual comparisons are shown in Fig. 11 and Fig. 12. As
can be observed, OpenESS shows superior event-based se-
mantic segmentation performance over prior works across
a wide range of event scenes under different lighting and
weather conditions. Such consistent segmentation perfor-
mance improvements provide a solid foundation to validate
the effectiveness and superiority of the proposed frame-
to-event contrastive distillation and text-to-event consis-
tency regularization. For additional qualitative compar-
isons, kindly refer to Appendix C.4.

C.3. Failure Cases

As can be observed from Fig. 10, Fig. 11, and Fig. 12,
the existing event-based semantic segmentation approaches
still have room for further improvements. Similar to the
conventional semantic segmentation task, it is often hard
to accurately segment the boundaries between the seman-
tic objects and backgrounds. In the context of event-based
semantic segmentation, such a problem tends to be partic-
ularly overt. Unlike traditional cameras that capture dense,
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Table 11. The per-class segmentation results of annotation-efficient event-based semantic segmentation approaches on the test set of
DSEC-Semantic [79]. All approaches adopted the frame2recon representation. Scores reported are IoUs in percentage (%). For each
semantic class under each experimental setting, the best score in each column is highlighted in bold.
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Linear Probing
Random 6.22 7.55 5.48 0.00 0.00 0.00 39.79 0.00 15.64 0.01 0.00 0.00 36.60

MaskCLIP [100] 27.09 59.82 62.14 1.60 0.00 4.54 69.71 5.34 47.85 38.51 0.40 8.12 70.59
FC-CLIP [97] 40.08 89.22 69.08 14.62 26.90 0.00 83.14 21.79 69.56 57.78 7.86 0.92 82.70

OpenESS (Ours) 44.08 88.56 61.43 6.05 21.54 12.36 91.43 63.04 64.01 60.52 6.18 9.76 84.48

Fine-Tuning (1%)
Random 23.95 76.37 29.59 1.73 0.00 5.75 78.12 9.73 48.96 11.56 0.28 1.38 69.20

MaskCLIP [100] 30.73 79.25 47.26 0.13 1.17 5.04 78.78 19.72 56.13 43.74 1.13 5.70 74.25
FC-CLIP [97] 38.99 87.75 61.48 3.47 4.60 8.06 88.96 55.12 64.41 47.16 3.61 4.23 82.90

OpenESS (Ours) 43.17 87.85 66.15 8.82 21.52 12.41 89.36 55.35 72.45 48.76 3.40 8.81 84.56

Fine-Tuning (5%)
Random 30.42 80.25 38.43 5.50 13.45 9.08 83.45 30.88 51.75 19.53 0.16 2.19 73.65

MaskCLIP [100] 36.33 85.80 60.43 2.60 8.70 7.47 83.10 34.04 64.80 39.60 3.07 10.00 80.37
FC-CLIP [97] 43.34 88.28 64.90 6.94 20.96 9.58 91.18 62.35 68.09 52.39 4.93 7.16 84.93

OpenESS (Ours) 45.58 89.11 70.83 10.92 20.21 1.99 91.04 60.76 72.07 67.91 12.90 3.69 86.93

Fine-Tuning (10%)
Random 34.11 81.85 46.28 4.87 11.30 10.20 85.32 43.16 55.34 32.72 1.28 2.90 77.48

MaskCLIP [100] 40.13 87.31 62.54 4.93 5.09 12.86 88.30 50.60 64.74 55.21 0.32 9.51 83.52
FC-CLIP [97] 45.35 89.71 69.00 6.64 22.37 8.33 91.20 64.09 69.34 61.73 7.23 9.19 86.29

OpenESS (Ours) 48.94 90.63 71.68 12.41 29.32 9.42 92.53 66.19 73.76 69.03 10.71 12.71 87.84

Fine-Tuning (20%)
Random 39.25 87.14 61.80 6.77 3.51 13.19 88.53 56.12 61.95 44.65 1.29 6.84 82.51

MaskCLIP [100] 43.37 89.83 69.80 7.07 8.93 10.67 88.88 52.65 70.71 60.03 3.10 15.39 85.69
FC-CLIP [97] 47.18 91.20 71.39 11.53 24.92 9.60 91.58 63.88 71.52 63.44 7.55 12.36 87.07

OpenESS (Ours) 49.74 91.28 73.43 10.69 27.18 13.85 92.84 67.59 74.20 69.22 10.62 16.21 88.26

synchronous frames, event cameras generate sparse, asyn-
chronous events, which brings extra difficulties for accurate
boundary segmentation. Meanwhile, the current framework
finds it hard to accurately predict the minor classes, such
as fence, pole, wall, and traffic-sign. We believe these are
potential directions that future works can explore to fur-
ther improve the event-based semantic segmentation perfor-
mance on top of existing frameworks.

C.4. Video Demos

In addition to the qualitative examples shown in the main
body and this supplementary file, we also provide several
video clips to further validate the effectiveness and supe-
riority of the proposed approach. Specifically, we provide
three video demos in the attachment, named demo1.mp4,
demo2.mp4, and demo3.mp4. The first two video de-
mos show open-vocabulary event-based semantic segmen-
tation examples using the class names and open-world vo-
cabularies as the input text prompts, respectively. The third
video demo contains qualitative comparisons of the seman-

tic segmentation predictions among our proposed OpenESS
and prior works. All the provided video sequences val-
idate again the unique advantage of the proposed open-
vocabulary event-based semantic segmentation framework.
Kindly refer to our GitHub repository1 for additional details
on accessing these video demos.

D. Broader Impact
In this section, we elaborate on the positive societal in-
fluence and potential limitations of the proposed open-
vocabulary event-based semantic segmentation framework.

D.1. Positive Societal influence

Event-based cameras can capture extremely fast motions
that traditional cameras might miss, making them ideal for
dynamic environments. In robotics, this leads to better ob-
ject detection and scene understanding, enhancing the ca-
pabilities of robots in the manufacturing, healthcare, and

1https://github.com/ldkong1205/OpenESS
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service industries. In autonomous driving, event-based se-
mantic segmentation provides high temporal resolution and
low latency, which is crucial for detecting sudden changes
in the environment. This can lead to faster and more accu-
rate responses, potentially reducing accidents and enhanc-
ing road safety. Our proposed OpenESS is designed to re-
duce the annotation budget and training burden of existing
event-based semantic segmentation approaches. We believe
such an efficient way of learning helps increase the scala-
bility of event-based semantic segmentation systems and in
turn contributes positively to impact society by enhancing
safety, efficiency, and performance in various aspects.

D.2. Potential Limitation

Although our proposed framework is capable of conducting
annotation-free and open-vocabulary event-based semantic
segmentation and achieves promising performance, there
tend to exist several potential limitations. Firstly, our cur-
rent framework requires the existence of synchronized event
and RGB cameras, which might not be maintained by some
older event camera systems. Secondly, we directly adopt
the standard text prompt templates to generate the text em-
bedding, where a more sophisticated design could further
improve the open-vocabulary learning ability of the existing
framework. Thirdly, there might still be some self-conflict
problems in our frame-to-event contrastive distillation and
text-to-event consistency regularization. The design of a
better representation learning paradigm on the event-based
data could further resolve these issues. We believe these are
promising directions that future works can explore to fur-
ther improve the current framework.

E. Public Resources Used
In this section, we acknowledge the use of public resources,
during the course of this work.

E.1. Public Datasets Used

We acknowledge the use of the following public datasets,
during the course of this work:
• DSEC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-SA 4.0
• DSEC-Semantic3 . . . . . . . . . . . . . . . . . . . . . . CC BY-SA 4.0
• DDD174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-SA 4.0
• DDD17-Seg5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• E2VID-Driving6 . . . . . GNU General Public License v3.0

E.2. Public Implementations Used

We acknowledge the use of the following public implemen-
tations, during the course of this work:

2https://dsec.ifi.uzh.ch
3https://dsec.ifi.uzh.ch/dsec-semantic
4http://sensors.ini.uzh.ch/news_page/DDD17.html
5https://github.com/Shathe/Ev-SegNet
6https://rpg.ifi.uzh.ch/E2VID.html

• ESS7 . . . . . . . . . . . . . . . GNU General Public License v3.0
• E2VID8 . . . . . . . . . . . . . GNU General Public License v3.0
• HMNet9 . . . . . . . . . . . . . . . . . . . . . . . BSD 3-Clause License
• EV-SegNet10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Unknown
• SNN-Segmentation11 . . . . . . . . . . . . . . . . . . . . . . . Unknown
• CLIP12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• MaskCLIP13 . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• FC-CLIP14 . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• SLIC-Superpixels15 . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• Segment-Anything16 . . . . . . . . . . . . . . .Apache License 2.0

7https://github.com/uzh-rpg/ess
8https://github.com/uzh-rpg/rpg_e2vid
9https://github.com/hamarh/HMNet_pth

10https://github.com/Shathe/Ev-SegNet
11https://github.com/Intelligent-Computing-Lab-

Yale/SNN-Segmentation
12https://github.com/openai/CLIP
13https://github.com/chongzhou96/MaskCLIP
14https://github.com/bytedance/fc-clip
15https://github.com/PSMM/SLIC-Superpixels
16https://github.com/facebookresearch/segment-

anything
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Background Building Fence Person Pole Road Sidewalk Vegetation Car Wall Traffic-Sign

Event Reconstruction “road” ”sidewalk” GT”building”

Figure 10. Qualitative examples of the language-guided attention maps generated by the proposed OpenESS framework. For each sample,
the regions with a high similarity score to the text prompts are highlighted. Best viewed in colors and zoomed-in for additional details.
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Background Building Fence Person Pole Road Sidewalk Vegetation Car Wall Traffic-Sign

Event Reconstruction MaskCLIP ESS-Sup OpenESS GT

Figure 11. Qualitative comparisons (1/2) among different ESS approaches on the test set of DSEC-Semantic [79]. Best viewed in colors.
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Background Building Fence Person Pole Road Sidewalk Vegetation Car Wall Traffic-Sign

Event Reconstruction MaskCLIP ESS-Sup OpenESS GT

Figure 12. Qualitative comparisons (2/2) among different ESS approaches on the test set of DSEC-Semantic [79]. Best viewed in colors.
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