

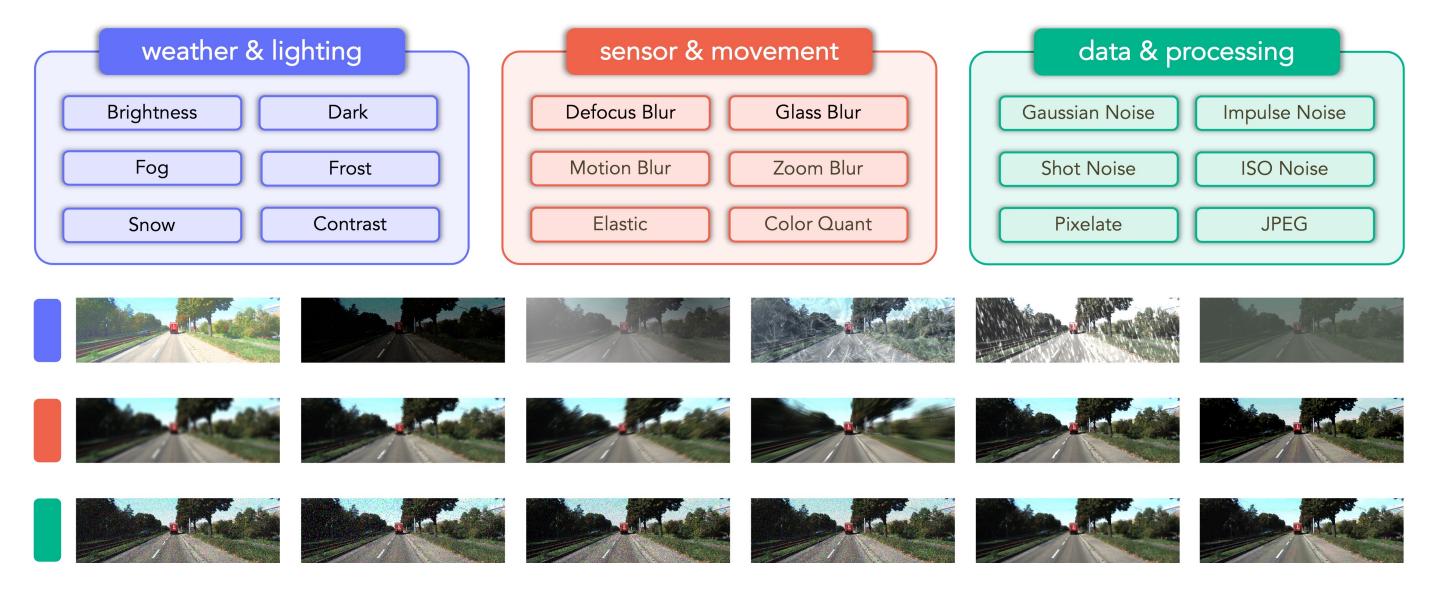
Benchmarking Out-of-Distribution Depth Estimation under Corruptions

Shaoyuan Xie³ Hanjiang Hu⁴ Lai Xing Ng⁵ Benoit Cottereau⁶ Wei Tsang Ooi¹ Lingdong Kong^{1,2} ¹National University of Singapore, ²CNRS@CREATE, ³Huazhong University of Science and Technology, ⁴Carnegie Mellon University, ⁵A*STAR, ⁶CNRS

Motivation & Contribution

TL;DR

> RoboDepth is a comprehensive benchmark for probing the robustness of monocular depth estimation algorithms. It includes 18 common corruption types, ranging from weather and lighting conditions, sensor failure and movement, and noises during data processing.



Motivation

- \succ Existing supervised & self-supervised learning-based depth estimation algorithms use clean video inputs for training. Videos captured by cameras in the real world, however, may include distortions, noises, and other artifacts introduced by the environment, sensors, or the data processing. In this project, we ask the following questions:
- \succ How robust are the existing monocular depth estimation algorithms to the various corruptions occur in the real world?
- > What makes an algorithm more **robust** to certain corruptions?
- \succ Can we design novel monocular depth estimation algorithms that are robust against common corruptions?

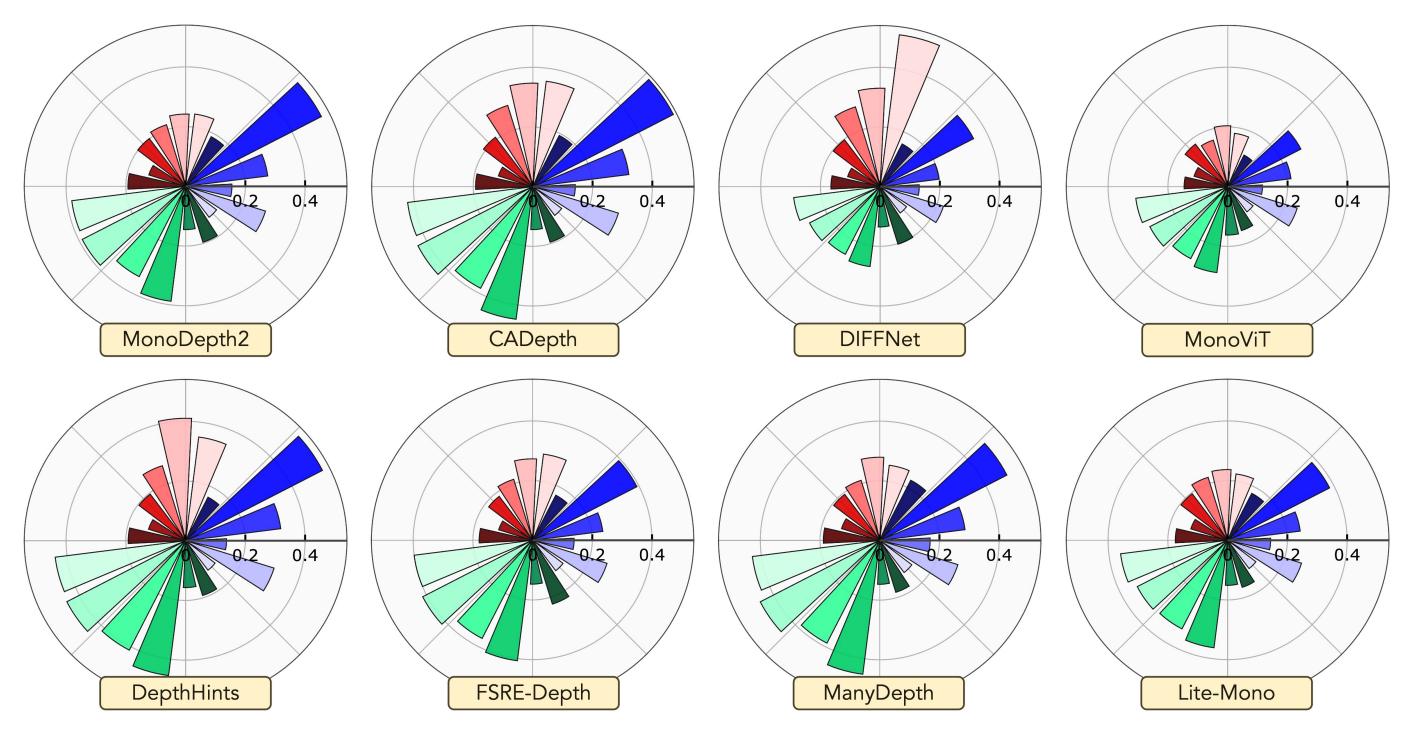
Collaborator

DesCartes CNIS CREATE Singapore

Dataset & Benchmark

The RoboDepth Benchmark

 \succ We benchmarked 42 state-of-the-art depth estimation models from indoor and outdoor scenes, on their robustness against corruptions, via newly established datasets: **KITTI-C**, **NYUDepth2-C**, and **KITTI-S**.



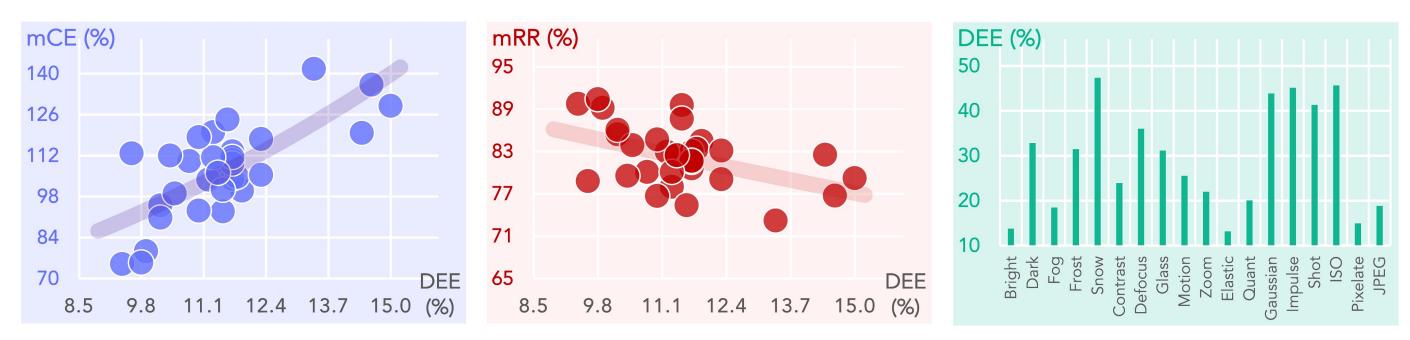
Statistical Analysis

- > We design different levels of **severity** for systematic analysis and benchmark.
- > We observe that different models exhibit diverse strengths and weaknesses.
- > Design choices matter for robustness to corruptions occur in the real world.

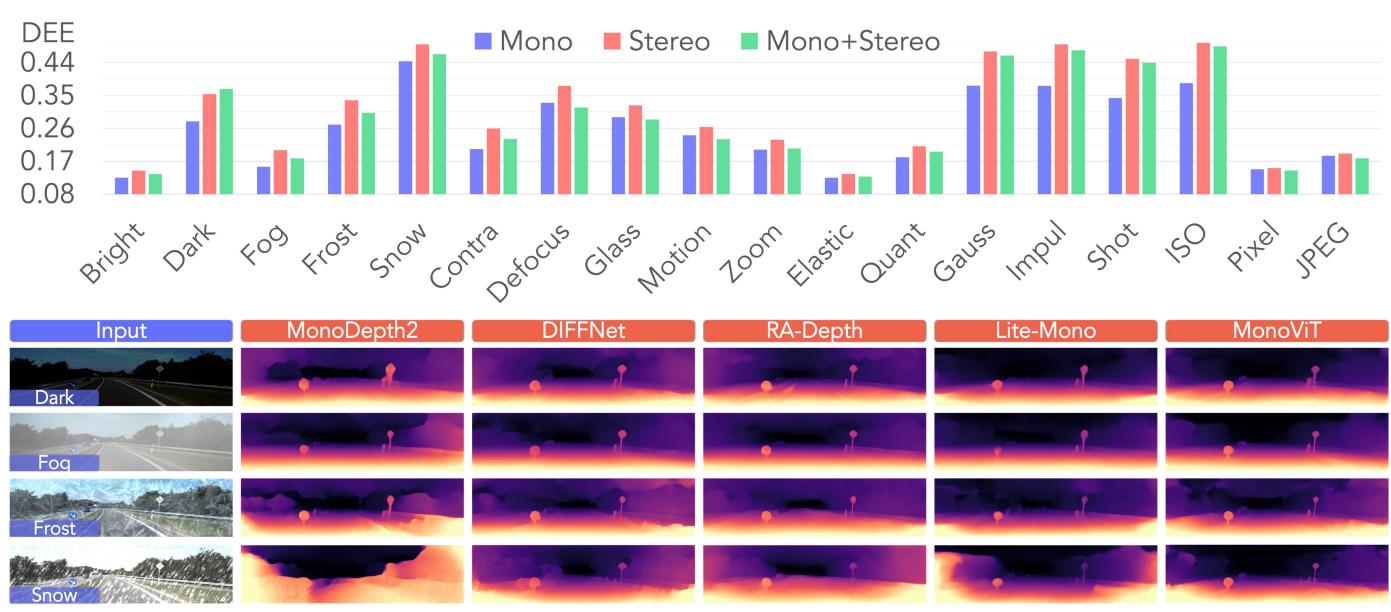
Agency for Science, Technology and Research INGAPORE

Carnegie Mellon University

Benchmarking Results



Ablation Study



Summary & Conclusion

- > We contribute **RoboDepth**, a new suite to facilitate future research toward robust and reliable monocular depth estimation.
- \succ The code and benchmark toolkit are openly **accessible** at our GitHub repository.

Experiments & Analysis

> We use mean Corruption Error (mCE) and mean Resilience Rate (mRR) to measure the robustness of monocular depth estimation models.

 \succ We find that existing models are vulnerable to corruptions, mainly due to the lack of a suitable robustness evaluation suite.

 \succ We reveal that the factors related to the input modality, resolution, and pretraining strategy are **important** for robust depth estimation.

