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Dataset & Benchmark Experiments & Analysis

Motivation & Contribution

TL;DR The RoboDepth Benchmark Benchmarking Results
» RoboDepth is a comprehensive benchmark for probing the robustness » We benchmarked 42 state-of-the-art depth estimation models from » We use mean Corruption Error (mCE) and mean Resilience Rate (mRR)
of monocular depth estimation algorithms. It includes 18 common Indoor and outdoor scenes, on their robustness against corruptions, to measure the robustness of monocular depth estimation models.
corruption types, ranging from weather and lighting conditions, sensor via newly established datasets: KITTI-C, NYUDepth2-C, and KITTI-S. T D 0
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Ablation Study

» We reveal that the factors related to the input modality, resolution,
and pretraining strategy are important for robust depth estimation.
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and other artifacts introduced by the environment, sensors, or the of severity for systematic £ I
data processing. In this project, we ask the following questions orabyels and benchmark. -
» How robust are the existing monocular depth estimation algorithms > We observe that different % I
to the various corruptions occur in the real world? models exhibit diverse ¢ T
strengths and weaknesses. S —

A\

What makes an algorithm more robust to certain corruptions?

Can we design novel monocular depth estimation algorithms that are
robust against common corruptions?

» Design choices matter for
robustness to corruptions
occur In the real world.
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