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Robo3D: Towards Robust and Reliable 3D Perception against Corruptions
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Datasets & Benchmarks

Motivation & Contribution

3D Perception Robustness: Evaluation

» The Robo3D benchmark is designed to facilitate robust 3D perception and scene understanding
in the autonomous driving context, shedding lights on practical and reliable deployment.
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This the first systematically-designed robustness evaluation suite for LIDAR-based 3D perception
under natural corruptions and sensor failures that tend to occur in the real-world scenarios.

Our benchmarks are built upon KITTI, SemanticKITTI, nuScenes, and Waymo Open datasets.
We benchmarked 34 perception algorithms for the LiDAR-based semantic segmentation and 3D

object detection tasks, on their robustness against corruptions. Based on our observations, we
draw in-depth discussions on the receipt of designing robust and reliable 3D perception models.
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3D Perception Robustness: Enhancement

» We observe several key factors that are correlated with model’s robustness, such as the sensor
setups, 3D data representations, rasterization resolutions, and out-of-context data augmentation.
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» The corruptions are often coped with huge density variations. To pursue better 3D robustness,
we propose a density-insensitive training framework along with a simple flexible voxelization
strategy to help existing 3D perception models learn more stable and general representations.

» We design the completion loss and confirmation loss that encourage
the consistency between the “full” view and “partial” view of a point
cloud, while the latter is subsampled from the complete point cloud.
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We show that our robustness enhancement framework can boost the
resilience of 3D detectors and segmentors in an off-the-shelf manner
across a broader range of corruptions without scarifying much accuracy.
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