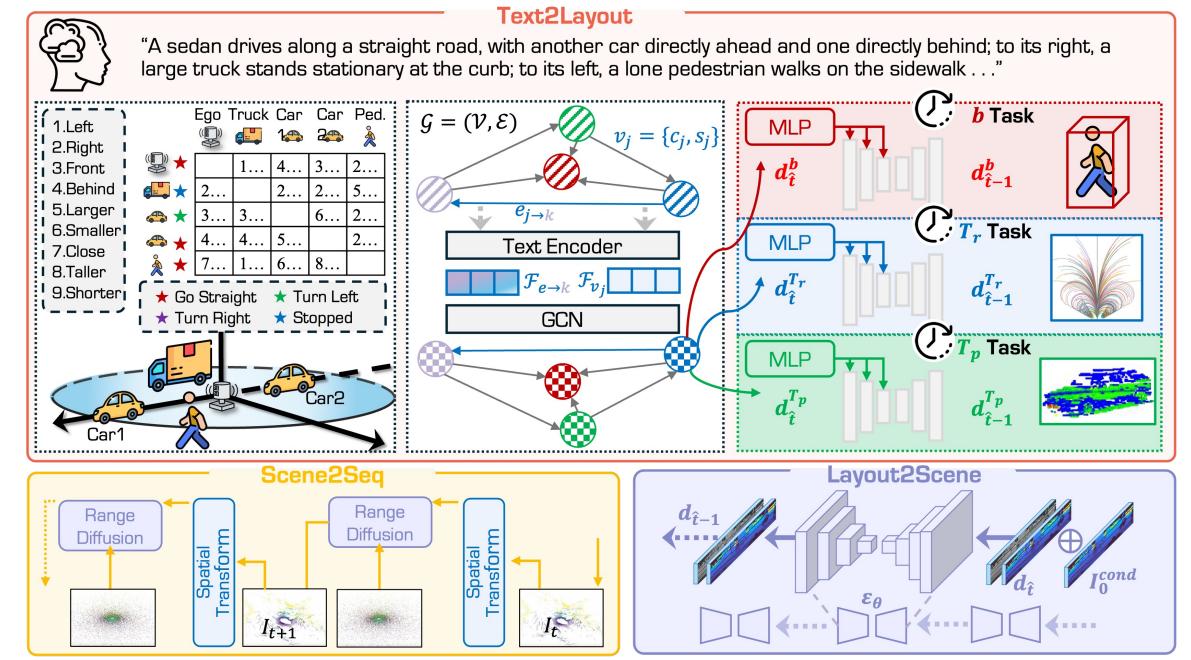

Learning to Generate 4D LiDAR Sequences

Abstract Paper @ ICCV 2025 Wild3D Workshop

Main Motivation & Key Contributions

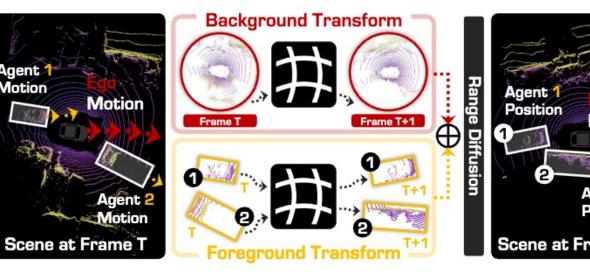
*LiDARCrafter is a unified framework for 4D LiDAR generation and editing. Given free-form natural language inputs, we parse instructions into ego-centric scene graphs, which condition a tri-branch diffusion network to generate object structures, trajectories, and geometry cues.

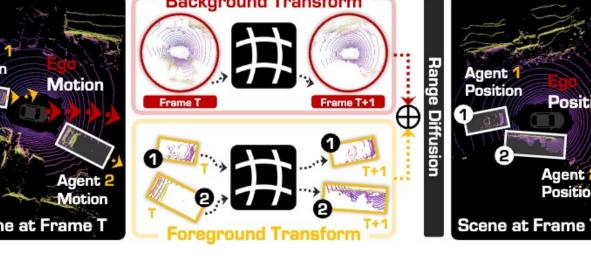


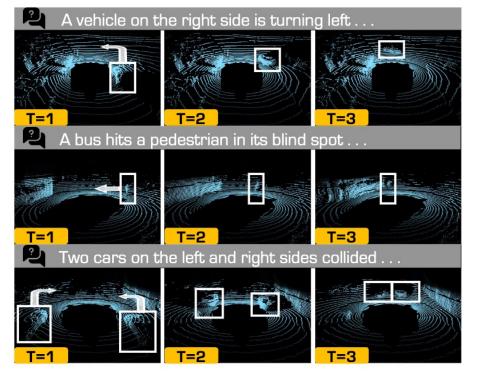
*Meanwhile, LiDARCrafter also leverages an autoregressive module to generate temporally coherent 4D LiDAR scenes with smooth transitions, conditioned on prior static 3D structures.

4D Scene Generation Pipeline & Framework

- *LiDARCrafter is a three-stage framework. In the Text2Layout stage, the natural-language instructions are parsed into an ego-centric scene graph, and a tri-branch diffusion network generates 4D conditions for bounding boxes, future trajectories, and object point clouds.
- ❖ The Layout2Scene stage uses a rangeview diffusion and the three generated conditions as inputs to generate a static LiDAR frame.
- *For Scene2Seq, we autoregressive modules to warp the historical points with ego & motion priors, generating a consistent 4D scene.




Ao Liang, Youquan Liu, Yu Yang, Dongyue Lu, Linfeng Li, Lingdong Kong, Huaici Zhao, Wei Tsang Ooi



Modeling 4D Worlds from LiDAR Sequences

- *The cornerstone of LiDARCrafter is an explicit 4D foreground layout that tailored to bridge the descriptive power of language and the geometric rigor acquired by LiDAR point clouds.
- *We feeds the layout to a range-image diffusion network and produces a high-fidelity first scan. The explicit layout modeling also enables finegrained controls of the static 3D scene, such as inserting, deleting, and dragging operations.

- *We then generates remaining LiDAR frames autoregressively, warping past 3D points with motion priors to maintain strong temporal coherence, enabling a diverse set of applications.
- To support standardized evaluation on LiDAR-based 4D scene generation, we establish a comprehensive suite and toolkit with diverse evaluation metrics, spanning scene-, object-, as well as sequence-level aspects for comparing existing approaches.

Experiments & Observations

* Experiments on the nuScenes dataset demonstrate that LiDARCrafter achieves state-of-the-art performance in fidelity, controllability, and temporal consistency across all aspects.

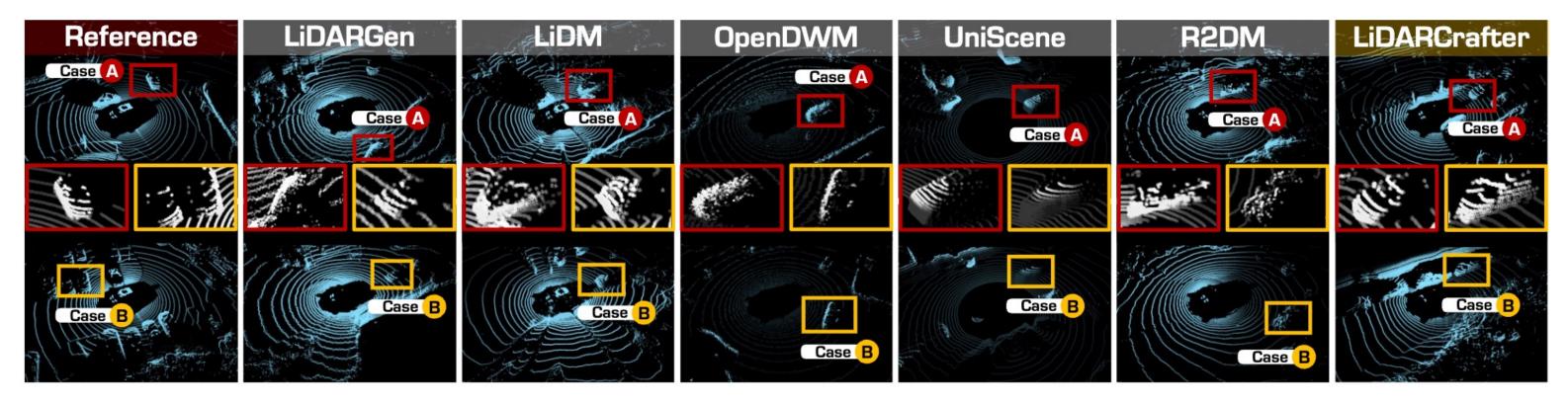


Table 1: Evaluations of scene-level fidelity for LiDAR generation on the nuScenes dataset. MMD values are reported in 10^{-4} and JSD in 10^{-2} . Lower is better for all metrics (1).

i i o ana 35			. Lower is better for all metric					C3 (4).
#	Method	Venue	Range		Points		BEV	
			FRD↓	MMD↓	FPD↓	MMD↓	JSD↓	MMD↓
Voxel	UniScene	CVPR'25	_	_	976.47	29.06	31.55	13.61
	OpenDWM	CVPR'25	_	_	714.19	21.95	20.17	5.61
	OpenDWM-DiT	CVPR'25	_	_	381.91	12.46	19.90	5.73
Kange	LiDARGen	ECCV'22	759.65	1.71	159.35	35.52	5.74	2.39
	LiDM	CVPR'24	495.54	0.18	210.20	8.45	5.86	0.73
	RangeLDM	ECCV'24	_	_	_	_	5.47	1.92
	R2DM	ICRA'24	243.35	1.40	33.97	1.62	3.51	0.71
	LiDARCrafter	Ours	194.37	0.08	8.64	0.90	3.11	0.42

Table 2: Comparison of foreground object quality using FDC (†), which reflects detector confidence on generated scenes. #Box is the average number of boxes per frame.

#	Method	Venue	Car↑	Ped↑	Truck ↑	Bus↑	#Box
Uncond.	LiDARGen LiDM R2DM	ECCV'22 CVPR'24 ICRA'24	0.57 0.65 0.54	0.29 0.22 0.29	0.42 0.45 0.39	0.38 0.31 0.35	0.364 0.28 0.53
Cond.	UniScene OpenDWM OpenDWM-DiT	CVPR'25 CVPR'25 CVPR'25	0.53 0.74 0.78	0.28 0.30 0.32	0.35 0.51 0.56	0.25 0.44 0.51	0.98 0.54 0.64
	LiDARCrafter	Ours	0.83	0.34	0.55	0.54	1.84

Code and dataset are public and free to use for future research.

