Unsupervised Video Domain Adaptation: A Disentanglement Perspective

Motivation & Contribution

TL;DR

- We introduce the Transfer Sequential VAE (TransVAE) framework to tackle unsupervised video domain adaptation tasks from a disentanglement view.
- Our key idea is to handle the spatial and temporal domain divergence separately through disentanglement; we pursue an explicit decoupling of the domain-specific info from other info via generative modeling.

○ Source Domain ○ Target Domain ▲ Source-Related Info ■ Target-Related Info ● Semantic-Related Info

Our approach achieves new state-of-the-art performance on the domain adaptation benchmarks of UCF-HMDB, Jester, Epic-Kitchens, and Sprites.

Domain Generation

We consider the generation process of cross-domain videos from two sets of latent factors: one set consists of a sequence of random variables, which are dynamic and inclined to encode the semantic information; another set is static and introduces some domain-related spatial information.

- The graphical illustrations of the proposed generative (left) and inference (right) models for video domain disentanglement are shown above.
- The blue and red **nodes** denote the **observed** source domain and target domain **videos** \mathbf{x}^{S} and \mathbf{x}^{T} , respectively, over *t* timestamps.
- ✤ The static latent variables \mathbf{z}_d^S and \mathbf{z}_d^T follow a joint distribution and combining either of them with dynamic latent variables \mathbf{z}_t constructs one video data of a domain, with which we developed TransVAE.

ByteDance

Pengfei Wei, Lingdong Kong, Xinghua Qu, Yi Ren, Zhiqiang Xu, Jing Jiang, Xiang Yin

Methodology

The TranSVAE Framework

- The input videos are fed into an encoder to extract the visual features, followed by an LSTM to explore the temporal information.
- ✤ Two groups of mean and variance networks are then applied to model the posterior of the latent factors, i.e., $q(\mathbf{z}_t^{\mathcal{D}} | \mathbf{x}_{< t}^{\mathcal{D}})$ and $q(\mathbf{z}_d^{\mathcal{D}} | \mathbf{x}_{< 1:T}^{\mathcal{D}})$.

✤ The new representations $\mathbf{z}_1^{\mathcal{D}}$, $\mathbf{z}_2^{\mathcal{D}}$, ..., $\mathbf{z}_T^{\mathcal{D}}$ and $\mathbf{z}_d^{\mathcal{D}}$ are sampled, and then concatenated and passed to a **decoder** for reconstruction. Four constraints are then proposed to regulate the latent factors for adaptation purposes.

Domain Disentanglement

We show domain disentanglement and transfer examples using Sprites as follows.

Input Sequence Left: "Human", slash, x^{P1} Right: "Alien", walk, x^{P2} 	X							A
Reconstruction • Left: "Human", slash, $\tilde{\mathbf{x}}^{\mathbf{P}_1}$ • Right: "Alien", walk, $\tilde{\mathbf{x}}^{\mathbf{P}_2}$								Ö
Domain Disentanglement Left: "Null", slash Right: "Null", walk 		<u>.</u>	• <u>\$</u> .					
Domain Transfer Left: "Alien", slash Right: "Human", walk 		<u>.</u>	. 🤼			*		*
Input Sequence Left: "Human", spellcard, x^{P1} Right: "Alien", slash, x^{P2} 	§ A	*	* 😪 🤱	ŵ ¢		â V	¥ ¥	â
Reconstruction • Left: "Human", spellcard, \tilde{x}^{P_1} • Right: "Alien", slash, \tilde{x}^{P_2}	â a	*	* 😤 🏯) <u>â</u>	â â	À À	â
Domain Disentanglement • Left: "Null", spellcard • Right: "Null", slash			* <u>-</u>					
Domain Transfer • Left: "Alien", spellcard		.	* <mark></mark>	8		<u></u>	<u>&</u> &	8

MOHAMED BIN ZAYED UNIVERSITY OF ARTIFICIAL INTELLIGENCE

Co \Rightarrow V a_1 Tas U = 1 H = 1 $D_1 = 1$ $D_2 = 2$ $D_2 = 2$ $D_3 = 2$ $D_3 = 2$ $D_3 = 2$ $D_3 = 2$ Avera

> ו Ab

 $\mathcal{L}_{\text{svae}}$

✓ ✓

Experiments & Analyses

Comparative Study

We conduct extensive experiments on popular unsupervised video domain adaptation benchmarks: UCF-HMDB, Jester, Epic-Kitchens, and Sprites.

ask	$\mathcal{S}_{ ext{only}}$	MM-SADA	STCDA	CMCD	A3R	CleanAdapt	CycDA	MixDANN	CIA	TranSVAE
$\rightarrow \mathbf{H} \\ \rightarrow \mathbf{U}$	$86.1 \\ 92.5$	$\begin{array}{c} 84.2\\91.1\end{array}$	$\begin{array}{c} 83.1\\92.1\end{array}$	$84.7 \\ 92.8$	/	89.8 99.2	$\begin{array}{c} 88.1 \\ 98.0 \end{array}$	$82.2 \\ 92.8$	88.3 94.1	87.8 (+1.7) 99.0 (+6.5)
rage ↑	89.3	87.7	87.6	88.8	/	94.5	93.1	87.5	91.2	93.4 (+4.1)
$\rightarrow \mathbf{D}_2$	43.2	49.5	52.0	50.3	53.2	52.7	/	56.0	52.5	50.5 (+ 7 .3)
$\rightarrow \mathbf{D}_3$	42.5	44.1	45.5	46.3	52.1	47.0	/	47.3	47.8	50.3 (+7.8)
$\rightarrow \mathbf{D}_1$	43.0	48.2	49.0	49.5	51.9	46.2	/	50.3	49.8	50.3 (+7.3)
$\rightarrow \mathbf{D}_3$	48.0	52.7	52.5	52.0	55.5	52.7	/	52.4	53.2	58.6 (+10.6)
$ ightarrow \mathbf{D}_1$	43.0	50.9	52.6	48.7	51.5	47.8	/	51.0	52.2	48.0 (+5.0)
$ ightarrow \mathbf{D}_2$	55.5	56.1	55.6	56.3	63 .2	54.4	/	54.7	57.6	58.0 (+2.5)
rage ↑	45.9	50.3	51.2	51.0	54.1	50.3	/	52.0	52.2	$52.6 \ (+6.7)$

Across all tasks, TranSVAE consistently outperforms all previous methods using single modality inputs; our approach even achieves better average results than seven out of eight multi-modal approaches (RGB + flow).

Ablation Study

The loss separation study on different tasks demonstrates the effectiveness for each of the four constraints designed in the TranSVAE framework.

\mathcal{L}_{cls}	\mathcal{L}_{adv}	\mathcal{L}_{mi}	\mathcal{L}_{ctc}	PL	$\mathbf{U} \to \mathbf{H}$	$\mathbf{H} \to \mathbf{U}$	$\mathbf{J}_\mathcal{S} \to \mathbf{J}_\mathcal{T}$	$ \mathbf{D}_1 \rightarrow \mathbf{D}_2$	$\mathbf{D}_1 \to \mathbf{D}_3$	$\mathbf{D}_2 ightarrow \mathbf{D}_1$	$\mathbf{D}_2 \to \mathbf{D}_3$	$ \mathbf{D}_3 \rightarrow \mathbf{D}_1$	$\mathbf{D}_3 \to \mathbf{D}_2$	Avg.
	\checkmark	\checkmark	\checkmark	\checkmark	18.61	26.62	22.92	34.00	30.29	33.79	30.49	28.51	34.27	28.83
\checkmark		\checkmark	\checkmark	\checkmark	83.06	93.52	48.07	40.93	43.33	43.91	51.13	41.84	52.67	55.38
\checkmark	\checkmark		\checkmark	\checkmark	85.83	93.52	65.12	46.67	48.56	49.43	55.34	45.52	54.53	60.60
\checkmark	\checkmark	\checkmark		\checkmark	83.89	95.80	64.89	48.53	48.25	48.96	54.21	45.52	55.73	60.64
\checkmark	\checkmark	\checkmark	\checkmark		87.22	94.40	64.64	49.87	48.25	49.66	56.47	47.59	55.07	61.46
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	87.78	98.95	66.10	50.53	50.31	50.34	58.62	48.04	58.00	63.19

The loss integration study and t-SNE plots verify that all constraints serve to achieve good disentanglement effect with domain divergence minimization.

	(b) 🍂 🜼	(c) 🦛	(d)	1	(e) 🗼	#	Leva	\mathcal{L}_{cle}	\mathcal{L}_{adv}	\mathcal{L}_{mi}	\mathcal{L}_{ctc}	PL	Accuracy (%)
	Store C		100		. 1 .	\mathcal{S}_{only}	Jova		auv	III	cit		80.27
*		× 👌 💊	18	AN		(a)	\checkmark	\checkmark					82.50 (+2.23)
See.	W.	1 No. 1		100 M	10 B	(b)	~	\checkmark	\checkmark				84.44 (+4.17)
\$	1 - 3			1	*	(c)	\checkmark	\checkmark	\checkmark	\checkmark			85. 56 (+5. 29)
Ś	AND THE REAL OF		4.11	Martin Con	- 1 -	(d)	√	\checkmark	\checkmark	\checkmark	\checkmark		87.22 (+6.95)
*				1		(e)	√	√	\checkmark	\checkmark	√	\checkmark	87.78 (+7.61)
See.	*	The state				\mathcal{T}_{sup}							95.00
*	(b) **	(c) 🌸	(d)		(e)	#	\mathcal{L}_{svac}	$_{e} \mathcal{L}_{cls}$	\mathcal{L}_{adv}	$\mathcal{L}_{\mathrm{mi}}$	\mathcal{L}_{ctc}	PL	Accuracy (%)
*	(b) *	(c) *	(d)		(e)	# S _{only}	L _{sva}	$_{\rm e}$ $\mathcal{L}_{\rm cls}$	\mathcal{L}_{adv}	\mathcal{L}_{mi}	$\mathcal{L}_{ ext{ctc}}$	PL	Accuracy (%) 88.79
	(b)	(c)	(d)		(e)	# S _{only} (a)	L _{svae}	e L _{cls}	\mathcal{L}_{adv}	$\mathcal{L}_{\mathrm{mi}}$	$\mathcal{L}_{ ext{ctc}}$	PL	Accuracy (%) 88.79 92.29 (+3.50)
	(b) **	(c)	(d)		(e)	# S _{only} (a) (b)	L _{sva} √	e L _{cls}	L _{adv}	£ _{mi}	$\mathcal{L}_{ ext{ctc}}$	PL	Accuracy (%) 88.79 92.29 (+3.50) 93.52 (+4.73)
	(b)	(c)	(d)		(e)	# <i>S</i> _{only} (a) (b) (c)	L _{sva} √ √	e L _{cls}	L _{adv}	L _{mi}	L _{ctc}	PL	Accuracy (%) 88.79 92.29 (+3.50) 93.52 (+4.73) 93.70 (+4.91)
	(b) *		(d)		(e)	# <i>S</i> _{only} (a) (b) (c) (d)	∠svat ✓ ✓ ✓ ✓ ✓ ✓	e L _{cls} ✓ ✓ ✓ ✓ ✓ ✓	L _{adv} √ √	L _{mi}	L _{ctc}	PL	Accuracy (%) 88.79 92.29 (+3.50) 93.52 (+4.73) 93.70 (+4.91) 94.40 (+5.61)
	(b) **		(d)		(e)	# <i>S</i> _{only} (a) (b) (c) (d) (e)	∠svaa √ √ √ √ √ √ √	e £ _{cls} ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	L _{adv} √ √ √ √	L _{mi} ✓ ✓ ✓	L _{ctc}	PL	Accuracy (%) 88.79 92.29 (+3.50) 93.52 (+4.73) 93.70 (+4.91) 94.40 (+5.61) 98.95 (+10.16)
	(b) **		(d)		(e)	# $ $	∠svaa √ √ √ √ √ √ √ √ √ √		L _{adv} √ √ √	L _{mi} ✓ ✓ ✓	L _{ctc}	PL	Accuracy (%) 88.79 92.29 (+3.50) 93.52 (+4.73) 93.70 (+4.91) 94.40 (+5.61) 98.95 (+10.16) 96.85

