

Robust & Data-Efficient Learning for 3D Scene Understanding

Speaker: Lingdong Kong

Dec. 18th, 2023

Topic

1. Overview & Background

2. Data-Efficient 3D Perception

3. Robustness in 3D

4. Segment Any Point Cloud Sequences

Topic

1. Overview & Background

2. Data-Efficient 3D Perception

3. Robustness in 3D

4. Segment Any Point Cloud Sequences

3D Scene Understanding

Indoor

Dai, et al. ScanNet V2. [CVPR 2017]

Outdoor

Behley, et al. SemanticKITTI. [ICCV 2019]

3D Scene Understanding

Main Features

- Autonomous driving perception
- Larger in scale (>120k points per scan)
- Sparser, more diverse
- Rich semantic categories
- Different sensor setups (32, 64, 128)
- Real-world distribution
- Standard benchmarks: nuScenes, SemanticKITTI, Waymo Open, etc.

Outdoor

Behley, et al. SemanticKITTI. [ICCV 2019]

MMDetection3D

an open-source toolbox based on PyTorch

the next-generation platform for general 3D object detection

As well as [NEW] 3D
 Semantic Segmentation

3D Object	Monocular 3D Object	Multi-modal 3D	3D Semantic			
Detection	Detection	Object Detection	Segmentation			
 Outdoor SECOND (Sensor'2018) PointPillars (CVPR'2019) SSN (ECCV'2020) 3DSSD (CVPR'2020) SA-SSD (CVPR'2020) PointRCNN (CVPR'2019) Part-A2 	 Outdoor ImVoxelNet (WACV'2022) SMOKE (CVPRW'2020) FCOS3D (ICCVW'2021) PGD (CoRL'2021) PGD (CoRL'2021) MonoFlex (CVPR'2021) Indoor ImVoxelNet (WACV'2022) 	 Outdoor MVXNet (ICRA'2019) Indoor ImVoteNet (CVPR'2020) 	 Outdoor MinkUNet (CVPR'2019) SPVCNN (ECCV'2020) Cylinder3D (CVPR'2021) Indoor PointNet++ (NeurIPS'2017) PAConv (CVPR'2021) DGCNN (TOG'2019) 			

MMDetection3D v1.1.1

Milioto, et al. RangeNet++. [IROS 2019]

Zhu, et al. Cylinder3D. [CVPR 2021]

Zhang, et al. PolarNet. [CVPR 2020]

Zhang, et al. PMF. [ICCV 2021]

MMDetection3D v1.1.1

Zhu, et al. Cylinder3D++. [TPAMI 2022]

Tang, et al. SPVCNN. [ECCV 2020]

Kong, et al. LaserMix. [CVPR 2023]

The MMDetection3D Codebase: https://github.com/open-mmlab/mmdetection3d

The MMDetection3D Codebase: <u>https://github.com/open-mmlab/mmdetection3d</u>

MMDetection3D v1.1.1

Method	Backend	Lr schd	Amp	Laser- Polar Mix	Mem (GB)	Training Time (hours)	FPS	mloU	Download	
MinkUNet18-W16	torchsparse	15e	\checkmark	×	3.4	-	-	60.3	model log	
MinkUNet18-W20	torchsparse	15e	\checkmark	×	3.7	-	-	61.6	model log	
MinkUNet18-W32	torchsparse	15e	\checkmark	×	4.9	-	-	63.1	model log	
MinkUNet34-W32	minkowski engine	Зx	×	\checkmark	11.5	6.5	12.2	69.2	model log	
MinkUNet34-W32	spconv	Зx	\checkmark	\checkmark	6.7	2	14.6*	68.3	model log	
MinkUNet34-W32	spconv	Зx	×	\checkmark	10.5	6	14.5	69.3	model log	
MinkUNet34-W32	torchsparse	Зx	\checkmark	\checkmark	6.6	3	12.8	69.3	model log	
MinkUNet34-W32	torchsparse	Зx	×	\checkmark	11.8	5.5	15.9	68.7	model log	
MinkUNet34v2- W32	torchsparse	Зx	\checkmark	\checkmark	8.9	10 0 7	-	70.3	model log	

Major Features

- Supports different sparse convolution backends
- Supports most recent 3D augmentation techniques
- Achieves SoTA
 3D semantic
 segmentation
 performance

The MMDetection3D Codebase: https://github.com/open-mmlab/mmdetection3d

Topic

1. Overview & Background

2. Data-Efficient 3D Perception

3. Robustness in 3D

4. Segment Any Point Cloud Sequences

LaserMix for Semi-Supervised LiDAR Semantic Segmentation

Lingdong Kong^{1,2,3} Jiawei Ren¹ Liang Pan¹ Ziwei Liu¹

¹ S-Lab, Nanyang Technological University ² National University of Singapore ³ CNRS@CREATE

Autonomous Driving Perception

From left to right:

- LiDAR semantic segmentation
- LiDAR panoptic segmentation
- 3D object detection
- 4D LiDAR panoptic segmentation

Why LiDAR sensors?

- Accurate depth sensing
- Robust at low-light conditions
- Dense perceptions
- • •

LiDAR Semantic Segmentation

A. Milioto, et al. RangeNet++: Fast and accurate LiDAR semantic segmentation, IROS, 2019.

Fully-Supervised LiDAR Semantic Segmentation

- SemanticKITTI
 - Full labels (100%)
 - 19 semantic classes
 - 100 m x 100 m
 - Up to 4.5 hours

J. Behley, et al. SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences, ICCV, 2019.

Weakly-Supervised LiDAR Semantic Segmentation

O. Unal, et al. Scribble-supervised LiDAR semantic segmentation, CVPR, 2022.

- SemanticKITTI
 - Full labels (100%)
 - 19 semantic classes
 - 100 m x 100 m
 - Up to 4.5 hours

ScribbleKITTI

- Weak (scribble) labels (8.06%)
- 19 semantic classes
- 100 m x 100 m
- 10 25 min per scan
- 90% time saving

Semi-Supervised LiDAR Segmentation

Objective (This Work)

• We target on the less-explored semisupervised LiDAR semantic segmentation

Semi-Supervised LiDAR Segmentation

Objective (This Work)

- We target on the less-explored semisupervised LiDAR semantic segmentation
- Our goal is to leverage the abundant raw LiDAR scans for training accurate segmentation models

Semi-Supervised LiDAR Segmentation

Objective (This Work)

- We target on the less-explored semisupervised LiDAR semantic segmentation
- Our goal is to leverage the abundant raw LiDAR scans for training accurate segmentation models
- We propose LaserMix to make advantages of the spatial prior in LiDAR scenes for effective learning with semi supervisions

LaserMix is a data-efficient learning framework designed for LiDAR segmentation that:

• Leverages the spatial prior in driving scenes for data-efficient learning

LaserMix is a data-efficient learning framework designed for LiDAR segmentation that:

- Leverages the spatial prior in driving scenes for data-efficient learning
- Constructs low-variational areas via laser
 beam mixing

LaserMix is a data-efficient learning framework designed for LiDAR segmentation that:

- Leverages the spatial prior in driving scenes for data-efficient learning
- Constructs low-variational areas via laser
 beam mixing
- Encourages the model to make confident and consistent predictions before and after mixing

LaserMix is a data-efficient learning framework designed for LiDAR segmentation that:

- Leverages the spatial prior in driving scenes for data-efficient learning
- Constructs low-variational areas via laser
 beam mixing
- Encourages the model to make confident and consistent predictions before and after mixing
- Achieved competitive results over full supervision counterparts with 2x to 5x fewer annotations

What is Spatial Prior?

Class	Туре	Proportion	Distribution	Heatmap
vegetation	static	24.825%		
road	static	22.545%		
sidewalk	static	16.353%		
car	dynamic	4.657%		
traffic-sign	static	0.061%		
motorcycle	dynamic	0.045%		
person	dynamic	0.036%		
bicycle	dynamic	0.018%		

Certain semantic class tends to appear at certain areas around the ego-vehicle!

LaserMix: Overview

(a) Motivation. Semantic scene priors are overt for each category in LiDAR point clouds.

LaserMix: Overview

(a) Motivation. Semantic scene priors are overt for each category in LiDAR point clouds. (b) Generalizability. LaserMix can be added into various popular LiDAR representations.

LaserMix: Overview

(a) Motivation. Semantic scene priors are overt for each category in LiDAR point clouds.
(b) Generalizability. LaserMix can be added into various popular LiDAR representations.
(c) Effectiveness. LaserMix helps to improve both semi- and fully-supervised settings.

Three-Step Procedure

1. Partitioning the captured LiDAR scan into low-variational areas

Three-Step Procedure

- 1. Partitioning the captured LiDAR scan into low-variational areas
- 2. Efficiently mixing every area in the LiDAR scan with foreign data

Three-Step Procedure

- 1. Partitioning the captured LiDAR scan into low-variational areas
- 2. Efficiently mixing every area in the LiDAR scan with foreign data
- 3. Encouraging the LiDAR segmentation models to make confident and consistent predictions on the same area in different mixing

• Inclination:

$$\phi_i = \arctan(\frac{p_i^z}{\sqrt{(p_i^x)^2 + (p_i^y)^2}})$$

• **Depth:** $\rho_i = \sqrt{(p_i^x)^2 + (p_i^y)^2}$

• Azimuth:

$$\alpha_i = \arctan(\frac{p_i^y}{p_i^x})$$

LaserMix: Consistency Regularization

Proof & Derivation (See Our Paper)

 p_{1}^{z}, p_{1}^{y}

LiDAR data and labels strongly correlate with the area A

Experimental Settings

	nuScenes [15]	SemanticKITTI [16]	ScribbleKITTI [4]			
Vis.						
#Class	16	19	19			
#Train	29130	19130	19130			
#Val	6019	4071	4071			
Res. (RV)	32×1920	64×2048	64×2048			
Res. (voxel)	[240, 180, 20]	[240, 180, 20]	[240, 180, 20]			
#Beam	32	64	64			
$[\phi_{ m up},\phi_{ m low}]$	$[10^{\circ}, -30^{\circ}]$	$[3^\circ, -25^\circ]$	$[3^{\circ}, -25^{\circ}]$			
$[p_{\max}^x, p_{\min}^x]$	[50m, -50m]	[50m, -50m]	[50m, -50m]			
$[p_{\max}^{y}, p_{\min}^{y}]$	[50m, -50m]	[50m, -50m]	[50m, -50m]			
$[p^{\boldsymbol{z}}_{\max},p^{\boldsymbol{z}}_{\min}]$	[3m, -5m]	[2m, -4m]	[2m, -4m]			
#Label	100%	100%	8.06%			
Intensity						
Range						
Semantics						

High-res LiDAR:

- SemanticKITTI
- Denser scenes

Low-res LiDAR:

- nuScenes
- Sparser scenes

Weak supervision:

- ScribbleKITTI
- Sparse labels

Experimental Settings

- Range View
 - Backbone: FIDNet [IROS' 21]
 - # Param: 6.05M
 - 6 x 32 x 1920 (nuScenes)
 - 6 x 64 x 2048 (SemanticKITTI/ScribbleKITTI)
- Voxel
 - Backbone: Cylinder3D [CVPR' 21]
 - # Param: 28.13M
 - [240, 180, 20]
- Data Split
 - 1%, 10%, 20%, 50% (labeled)
 - Random sampling
 - Assume the remaining ones are unlabeled

Y. Zhao, et al. FIDNet: LiDAR point cloud semantic segmentation with fully interpolation decoding, IROS, 2021. X. Zhu, et al. Cylindrical and asymmetrical 3D convolution networks for LiDAR segmentation, CVPR, 2021.

Comparative Study

Done	Dopr Mathad		nuScenes [15]			SemanticKITTI [16]			ScribbleKITTI [4]				
Kepi.	Wiethou	1%	10%	20%	50%	1%	10%	20%	50%	1%	10%	20%	50%
Range View	Suponly	38.3	57.5	62.7	67.6	36.2	52.2	55.9	57.2	33.1	47.7	49.9	52.5
	MeanTeacher [26] CBST [30]	$\begin{vmatrix} 42.1 \\ 40.9 \end{vmatrix}$	$\begin{array}{c} 60.4 \\ 60.5 \end{array}$	$\begin{array}{c} 65.4\\ 64.3\end{array}$	$\begin{array}{c} 69.4 \\ 69.3 \end{array}$	$\begin{array}{c} 37.5\\ 39.9 \end{array}$	$53.1 \\ 53.4$	$56.1 \\ 56.1$	57.4 56.9	$\begin{vmatrix} 34.2 \\ 35.7 \end{vmatrix}$	$49.8 \\ 50.7$	$51.6 \\ 52.7$	$53.3 \\ 54.6$
	CutMix-Seg [29] CPS [13]	$\begin{array}{c} 43.8\\ 40.7\end{array}$	63.9 60.8	$\begin{array}{c} 64.8\\ 64.9\end{array}$	69.8 68.0	$\begin{array}{c} 37.4\\ 36.5\end{array}$	$54.3 \\ 52.3$	$\begin{array}{c} 56.6\\ 56.3\end{array}$	$57.6 \\ 57.4$	$\begin{array}{c} 36.7\\ 33.7\end{array}$	$\begin{array}{c} 50.7\\ 50.0\end{array}$	$52.9 \\ 52.8$	$\begin{array}{c} 54.3\\54.6\end{array}$
	$\begin{array}{c} \textbf{LaserMix (Ours)} \\ \Delta \uparrow \end{array}$	$\begin{vmatrix} 49.5 \\ +11.2 \end{vmatrix}$	68.2 +10.7	70.6 + 7.9	73.0 + 5.4	$\begin{vmatrix} 43.4 \\ +7.2 \end{vmatrix}$	58.8 +6.6	59.4 + 3.5	$\begin{array}{c} 61.4 \\ \mathbf{+4.2} \end{array}$	38.3 +5.2	$\begin{array}{c} 54.4 \\ \mathbf{+6.7} \end{array}$	$\begin{array}{c} 55.6 \\ \mathbf{+5.7} \end{array}$	58.7 + 6.2
-	Suponly	50.9	65.9	66.6	71.2	45.4	56.1	57.8	58.7	39.2	48.0	52.1	53.8
Voxel	MeanTeacher [26] CBST [30] CPS [13]	$51.6 \\ 53.0 \\ 52.9$	$ \begin{array}{r} 66.0 \\ 66.5 \\ 66.3 \end{array} $	67.1 69.6 70.0	71.7 71.6 72.5	$\begin{array}{c c} 45.4 \\ 48.8 \\ 46.7 \end{array}$	$57.1 \\ 58.3 \\ 58.7$	$59.2 \\ 59.4 \\ 59.6$	$ \begin{array}{r} 60.0 \\ 59.7 \\ 60.5 \end{array} $	$ \begin{array}{c}41.0\\41.5\\41.4\end{array} $	$50.1 \\ 50.6 \\ 51.8$	$52.8 \\ 53.3 \\ 53.9$	$53.9 \\ 54.5 \\ 54.8$
	LaserMix (Ours) $\Delta \uparrow$	$55.3 \\ +4.4$	69.9 +4.0	71.8 + 5.2	73.2 + 2.0	$\begin{array}{c} 50.6 \\ \mathbf{+5.2} \end{array}$	60.0 + 3.9	$\begin{array}{c} 61.9 \\ \mathbf{+4.1} \end{array}$	62.3 + 3.6	$\begin{vmatrix} 44.2 \\ +5.0 \end{vmatrix}$	$53.7 \\ +5.7$	$\begin{array}{c} 55.1 \\ \mathbf{+3.0} \end{array}$	56.8 + 3.0

A. Tarvainen and H. Valpola. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results, NeurIPS, 2017.

- G. French, et al. Semi-supervised semantic segmentation needs strong, high-dimensional perturbations, BMVC, 2020.
- Y. Zou, et al. Domain adaptation for semantic segmentation via class-balanced self-training, ECCV, 2018.
- X. Chen, et al. Semi-supervised semantic segmentation with cross pseudo supervision, CVPR, 2021.
Comparative Study

				the second se						
			-			Method	1/16	1/8	1/4	1/2
	mi					MeanTeacher [26]	66.1	71.2	74.4	76.3
1	0					w/ Ours	68.7	72.3	75.7	76.8
						Δ \uparrow	+2.6	+1.1	+1.3	+0.5
	road	sidewalk	building	wall	fence	CCT [11]	66.4	72.5	75.7	76.8
						GCT [12]	65.8	71.3	75.3	77.1
		1000 March				CPS [13]	69.8	74.4	76.9	78.6
	pole	traffic light	traffic sign	vegetation	terrain	CPS-CutMix [13]	74.5	76.6	77.8	78.8
			and the second se			w/ Ours	75.5	77.1	78.3	79.1
	sky	person	rider	car	truck	Δ \uparrow	+1.0	+0.5	+0.5	+0.3
	bus	train	motorcycle	bicycle						
					Also cont	tains spatial priors in	n scen	es!		

Y. Ouali, et al. Semi-supervised semantic segmentation with cross-consistency training, CVPR, 2020. Z. Ke, et al. Guided collaborative training for pixel-wise semi-supervised learning, ECCV, 2020.

#	\mathcal{L}_{mt}	$\mathcal{L}_{\mathrm{mix}}$	SS	TS	1%	10%	20%	50%
(1)	\checkmark				42.1	60.4	65.4	69.4
(2)	\checkmark	√ √	✓ ✓		$\begin{array}{c} 45.6\\ 47.0\end{array}$	$\begin{array}{c} 64.3 \\ 65.5 \end{array}$	$\begin{array}{c} 67.8 \\ 69.5 \end{array}$	$71.6 \\ 72.0$
(3)	\checkmark	√ √		✓ ✓	$\begin{array}{c} 46.0\\ 49.5\end{array}$	$\begin{array}{c} 64.1 \\ 68.2 \end{array}$	$69.5 \\ 70.6$	$72.3 \\ 73.0$

- (1) Results of MeanTeacher.
- (2) Results of LaserMix w/ student supervisions; much better than the counterpart.
- (3) Results of LaserMix w/ teacher supervisions; much better than the counterpart.

Ablation Study

(a) Comparisons among different mixing techniques.

A. Nekrasov, et al. Mix3D: Out-of-context data augmentation for 3D scenes, 3DV, 2021.

S. Yun, et al. Cutmix: Regularization strategy to train strong classifiers with localizable features, ICCV, 2019

T. DeVries and G. W. Taylor. Improved regularization of convolutional neural networks with cutout, arXiv, 2017

H. Zhang, et al. Mixup: Beyond empirical risk minimization, ICLR, 2018.

Ablation Study

(a) Comparisons among different mixing techniques. (b) EMA. (c) Confidence threshold.

A. Nekrasov, et al. Mix3D: Out-of-context data augmentation for 3D scenes, 3DV, 2021.

S. Yun, et al. Cutmix: Regularization strategy to train strong classifiers with localizable features, ICCV, 2019

T. DeVries and G. W. Taylor. Improved regularization of convolutional neural networks with cutout, arXiv, 2017

H. Zhang, et al. Mixup: Beyond empirical risk minimization, ICLR, 2018.

Ablation Study

• Inclination:

$$\phi_i = \arctan(\frac{p_i^z}{\sqrt{(p_i^x)^2 + (p_i^y)^2}})$$

• **Depth:** $\rho_i = \sqrt{(p_i^x)^2 + (p_i^y)^2}$

• Azimuth:

$$\alpha_i = \arctan(\frac{p_i^y}{p_i^x})$$

- Paper: https://arxiv.org/abs/2207.00026
- Code: https://github.com/ldkong1205/LaserMix
- Project Page: https://ldkong.com/LaserMix

Topic

1. Overview & Background

2. Data-Efficient 3D Perception

3. Robustness in 3D

4. Segment Any Point Cloud Sequences

Robo3D: Towards Robust and Reliable 3D Perception against Corruptions

Lingdong Kong^{1,2,*}, Youquan Liu^{1,3,*}, Xin Li^{1,4,*}, Runnan Chen^{1,5}, Wenwei Zhang^{1,6} Jiawei Ren⁶, Liang Pan⁶, Kai Chen¹, Ziwei Liu⁶

 1 Shanghai Al Lab 2 NUS 3 Hochschule Bremerhaven 4 ECNU 5 HKU 6 S-Lab, NTU

Complex Driving Environment

Image credit: <u>https://zod.zenseact.com</u>

Robo3D

TL;DR

• We introduce Robo3D, the first systematically-designed robustness evaluation suite for LiDAR-based 3D perception under corruptions and sensor failures

ICCV23

PARIS

Robo3D

TL;DR

- We introduce Robo3D, the first systematically-designed robustness evaluation suite for LiDAR-based 3D perception under corruptions and sensor failures
- We benchmarked 34 perception models for LiDAR-based • semantic segmentation and object detection tasks, on their robustness against corruptions

Robo3D

TL;DR

• We introduce Robo3D, the first systematically-designed robustness evaluation suite for LiDAR-based 3D perception under corruptions and sensor failures

ICCV23

PARIS

- We benchmarked 34 perception models for LiDAR-based semantic segmentation and object detection tasks, on their robustness against corruptions
- Based on our observations, we draw in-depth discussions on the receipt of designing more robust and reliable 3D perception models

Robo3D: Taxonomy

*More examples at: https://ldkong.com/Robo3D

3D Corruptions: Clean

3D Corruptions: Fog

Fog Simulation

- The foggy weather mainly causes back-scattering and attenuation of LiDAR pulse transmissions
- This results in severe shifts of both range and intensity for the points in a LiDAR point cloud

M. Hahner, et al. Fog simulation on real LiDAR point clouds for 3D object detection in adverse weather, ICCV, 2021.

3D Corruptions: Fog

3D Corruptions: Wet Ground

Wet Ground Simulation

- The emitted laser pulses from the LiDAR sensor tend to lose certain amounts of energy when hitting wet surface
- This cause significantly attenuated laser echoes depending on the water height and mirror refraction rate

M. Hahner, et al. LiDAR snowfall simulation for robust 3D object detection, CVPR, 2022.

3D Corruptions: Wet Ground

3D Corruptions: Snow

Snow Simulation

• For the laser beam in snowy weather, the set of particles in the air will intersect with it and derive the angle of the beam cross-section that is reflected by each particle, taking potential occlusions into account

M. Hahner, et al. LiDAR snowfall simulation for robust 3D object detection, CVPR, 2022.

3D Corruptions: Snow

3D Corruptions: Motion Blur

Motion Blur Simulation

• LiDAR is often mounted on the rooftop or side of the vehicle and inevitably suffers from the blur caused by vehicle movement, especially on bumpy surfaces or during U-turning

S. P. Deschenes, et al. LiDAR scan registration robust to extreme motions, ICRV, 2021.

3D Corruptions: Motion Blur

3D Corruptions: Beam Missing

Beam Missing Simulation

- The dust and insect tend to form agglomerates in front of the LiDAR surface and will not likely disappear without human intervention, such as drying and cleaning
- This type of occlusion causes zero readings on masked areas and results in the loss of certain light impulses

T. G. Phillips, et al. When the dust settles: The four behaviors of LIDAR in the presence of fine airborne particulates, JFR, 2017.

3D Corruptions: Beam Missing

Crosstalk Simulation

- The time-of-flight of light impulses from one sensor on a vehicle might interfere with impulses from other sensors from other vehicles within a similar frequency range
- Such a crosstalk phenomenon often creates noisy points within the mid-range areas in between two (or multiple) sensors

A. L. Diehm, et al. Mitigation of crosstalk effects in multi-LiDAR configurations, Electro-Optical Remote Sensing XII, 2018.

3D Corruptions: Crosstalk

3D Corruptions: Incomplete Echo

Incomplete Echo Simulation

• The near-infrared spectrum of the laser pulse emitted from the LiDAR sensor is vulnerable to vehicles or other instances with dark colors. The LiDAR readings are thus incomplete in such scan echoes, resulting in significant point miss detection

K. Yu, et al. Benchmarking the robustness of LiDAR-camera fusion for 3D object detection, arXiv, 2022.

3D Corruptions: Incomplete Echo

3D Corruptions: Cross-Sensor

Cross-Sensor Simulation

- Due to the large variety of LiDAR sensor configurations (beam number, FOV, and sampling frequency), it is important to design robust 3D perception models that are capable of maintaining satisfactory performance under cross-device cases
- While previous works directly form such settings with two different datasets, the domain idiosyncrasy in between (e.g., different label mappings and data collection protocols) further hinders the direct robustness comparison

Y. Wei, et al. LiDAR distillation: Bridging the beam-induced domain gap for 3D object detection, ECCV, 2022.

3D Corruptions: Cross-Sensor

Corruption Types

• Include 8 corruption types, each with 3 severity levels (Easy, Moderate, and Hard)

Datasets (6 different collections)

- LiDAR Semantic Segmentation: ¹SemanticKITTI-C, ²nuScenes-C (Seg3D), ³WOD-C (Seg3D)
- 3D Object Detection: ⁴KITTI-C, ⁵nuScenes-C (Det3D), ⁶WOD-C (Det3D)

Model & Algorithm (34 perception models)

- LiDAR Semantic Segmentation: 22 segmentors
- 3D Object Detection: 12 detectors
- Data Augmentation: **3** augmentation techniques

Robo3D: Representations

Representation

- 2D: range view, birds eye view
- **3D:** cubic voxel, cylinder voxel

Operator

- 3D: Conv3d, SparseConv, etc.
- 2D: Conv2d, Linear, etc.
- 1D: Conv1d, Linear, etc.

M. Uecker, et al. Analyzing deep learning representations of point clouds for real-time in-vehicle LiDAR perception, arXiv, 2022.

Task-Specific Accuracy (Acc)

- LiDAR Semantic Segmentation: mean IoU (mIoU)
- 3D Object Detection: mean AP (mAP), nuScenes Detection Score (NDS)

Robustness Metrics

• Mean Corruption Error (mCE)

$$CE_{i} = \frac{\sum_{l=1}^{3} (1 - Acc_{i,l})}{\sum_{l=1}^{3} (1 - Acc_{i,l}^{baseline})}, \quad mCE = \frac{1}{N} \sum_{i=1}^{N} CE_{i}$$

• Mean Resilience Rate (mRR)

$$\mathbf{RR}_{i} = \frac{\sum_{l=1}^{3} \operatorname{Acc}_{i,l}}{3 \times \operatorname{Acc}_{\text{clean}}} , \quad \mathbf{mRR} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{RR}_{i}$$

Robo3D: Benchmark Results

*More results and analysis at: <u>https://github.com/ldkong1205/Robo3D</u>

Robo3D: Key Observations

- 1. Existing 3D detectors and segmentors are vulnerable to real-world corruptions
- 2. Models trained with LiDAR data from different sources (sensor setups) exhibit inconsistent sensitivities to each corruption type
- 3. Representing the LiDAR data as raw points, sparse voxel, or the fusion of them tend to yield better robustness

Robo3D: Key Observations

- 4. The 3D detectors and segmentors show different sensitivities to corruption scenarios
- 5. The recent out-of-context augmentation techniques improve 3D robustness by large margins; the flexible rasterization strategies help learn more robust features

Robo3D: Qualitative Assessments

Robo3D: Qualitative Assessments

Robo3D: Robustness Enhancement

Motivation

- The natural corruptions often cause severe occlusion, attenuation, and reflection of light impulses, resulting in the unavoidable loss of LiDAR points in certain regions around the ego-vehicle
- For example, the wet ground absorbs energy and loses points on the surfaces; the potential incomplete echo and beam missing caused by reflection or dust/insect occlusion may lead to serious object failure

Robo3D: Robustness Enhancement

Density-Insensitive Training

- Completion loss: $\mathcal{L}_{\text{part2full}} = || \mathcal{G}_{\theta}^{\text{tea}}(x), \text{ interp}(\mathcal{G}_{\theta}^{\text{stu}}(\tilde{x})) ||_2^2$.
- Confirmation loss: $\mathcal{L}_{\text{full2part}} = || \operatorname{subsample}(\mathcal{G}_{\theta}^{\text{tea}}(x)), \ \mathcal{G}_{\theta}^{\text{stu}}(\tilde{x}) ||_{2}^{2}$.

Open-Source Resources

https://github.com/ldkong1205/Robo3D

Topic

1. Overview & Background

2. Data-Efficient 3D Perception

3. Robustness in 3D

4. Segment Any Point Cloud Sequences

Segment Any Point Cloud Sequences by Distilling Vision Foundation Models

Youquan Liu^{1,*}, Lingdong Kong^{1,2,*}, Jun Cen^{1,3}, Runnan Chen^{1,4} Wenwei Zhang^{1,5}, Liang Pan⁵, Kai Chen¹, Ziwei Liu⁵ ¹Shanghai Al Lab²NUS³HKUST⁴HKU⁵S-Lab, NTU

Visual Perception System

H. Caesar, et al. nuScenes: A multimodal dataset for autonomous driving, CVPR, 2020.

Autonomous Driving Perception System

H. Caesar, et al. nuScenes: A multimodal dataset for autonomous driving, CVPR, 2020.

Segment Anything

- Training Set: SA-1B, over 1B masks on 11M images
- Model: ViT-H SAM model
- **Demo:** <u>https://segment-anything.com/demo</u>

A. Kirillov, et al. Segment anything, ICCV, 2023.

Segment Anything

A. Kirillov, et al. Segment anything, ICCV, 2023.

X-Decoder

X. Zou, et al. Generalized decoding for pixel, image, and language, CVPR, 2023.

X. Zou, et al. Segment everything everywhere all at once, NeurIPS, 2023.

Segment Any RGB-D

J. Cen, et al. SAD: Segment any RGBD, NeurIPS Workshop, 2023.

Y. Yang, et al. SAM3D: Segment anything in 3D scenes, arXiv, 2023.

TL;DR

 Seal is a versatile self-supervised learning framework capable of segmenting any automotive point clouds

TL;DR

- Seal is a versatile self-supervised learning framework capable of segmenting any automotive point clouds
- Seal leverages off-the-shelf knowledge from vision foundation models (VFMs) and encouraging spatial and temporal consistency from such knowledge during the representation learning stage

TL;DR

- Seal is a versatile self-supervised learning framework capable of segmenting any automotive point clouds
- Seal leverages off-the-shelf knowledge from vision foundation models (VFMs) and encouraging spatial and temporal consistency from such knowledge during the representation learning stage
- Seal enables knowledge transfer in an off-the-shelf manner to downstream tasks involving diverse point clouds, including those from real/synthetic, low/high-resolution, large/small-scale, and clean/corrupted datasets

Seal: Challenges & Motivations

Challenges

- Camera views \neq LiDAR views
- Automotive point clouds have unique label mappings
- LiDAR and cameras are not perfectly synchronized

Seal: Challenges & Motivations

Challenges

- Camera views \neq LiDAR views
- Automotive point clouds have unique label mappings
- LiDAR and cameras are not perfectly synchronized

We hope to have a framework that ...

- Conducts self-supervised learning on automotive point clouds
- Enforces spatial and temporal consistency during representation learning
- Can be generalizable to diverse downstream tasks

Superpixels

What is Superpixel

 Grouped pixels of perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid

Fig. 1: Images segmented using SLIC into superpixels of size 64, 256, and 1024 pixels (approximately).

R. Achanta, et al. SLIC superpixels compared to state-of-the-art superpixel methods, TPAMI, 2012.

Superpixels

What is Superpixel

 Grouped pixels of perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid

Key Features of Superpixel

- Captures image redundancy
- Provides a convenient primitive from which to compute image features
- Greatly reduces the complexity of subsequent image processing tasks

Fig. 1: Images segmented using SLIC into superpixels of size 64, 256, and 1024 pixels (approximately).

R. Achanta, et al. SLIC superpixels compared to state-of-the-art superpixel methods, TPAMI, 2012.

SLidR: Superpixel-Driven LiDAR Representation

C. Sautier, et al. Image-to-LiDAR self-supervised distillation for autonomous driving data, CVPR, 2022.

SLidR: Superpixel-Driven LiDAR Representation

C. Sautier, et al. Image-to-LiDAR self-supervised distillation for autonomous driving data, CVPR, 2022.

Semantic Superpixels

Camera View (Front)

Superpixel (SLIC)

Semantic Superpixel (SAM)

Semantic Superpixel (X-Decoder)

Semantic Superpixel (OpenSeeD)

Semantic Superpixel (SEEM)

Superpixel to Superpoint

Camera View (Front)

Superpixel (SLIC)

Semantic Superpixel (SAM)

LiDAR View (Front)

Superpoint (SLIC)

Semantic Superpoint (SAM)

Superpixel to Superpoint

Seal: Vision Foundation Models

Seal: Semantic Superpoints

Raw Point Cloud

Semantic Superpoint

Ground-Truth

Seal: Framework

Seal: Framework

Seal: Superpixels Statistics

Seal: Framework

Seal: Spatial & Temporal Consistency

Spatial Consistency

• Cross-modality contrastive learning:

$$\mathcal{L}^{vfm} = \mathcal{L}\left(\mathbf{Q}, \mathbf{K}\right) = -\frac{1}{M} \sum_{i=0}^{M} \log \left[\frac{e^{\left(\langle \mathbf{q}_{i}, \mathbf{k}_{i} \rangle / \tau\right)}}{\sum_{j \neq i} e^{\left(\langle \mathbf{q}_{i}, \mathbf{k}_{j} \rangle / \tau\right)} + e^{\left(\langle \mathbf{q}_{i}, \mathbf{k}_{i} \rangle / \tau\right)}}\right]$$

Temporal Consistency

• Superpoint temporal consistency:

$$\mathcal{L}^{t \to t+1} = -\frac{1}{M_k} \sum_{i=0}^{M_k} \log \left[\frac{e^{\left(\left\langle \mathbf{f}_i^t, \mathbf{f}_i^{t+1} \right\rangle / \tau \right)}}{\sum_{j \neq i} e^{\left(\left\langle \mathbf{f}_i^t, \mathbf{f}_j^{t+1} \right\rangle / \tau \right)} + e^{\left(\left\langle \mathbf{f}_i^t, \mathbf{f}_i^{t+1} \right\rangle / \tau \right)}} \right]$$

• Point-to-segment regularization:

$$\mathcal{L}^{p2s} = -\frac{1}{M_k} \sum_{i=0}^{M_k} \log \left[\frac{e^{\left(\left\langle \mathbf{f}_i^t, \mathbf{c}_i^t \right\rangle / \tau \right)}}{\sum_{j \neq i} e^{\left(\left\langle \mathbf{f}_i^t, \mathbf{c}_j^t \right\rangle / \tau \right)} + e^{\left(\left\langle \mathbf{f}_i^t, \mathbf{c}_i^t \right\rangle / \tau \right)}} \right]$$

Seal: Experiments

Datasets

- Pretrained on nuScenes
- Linear probing with frozen backbone
- 20 downstream tasks on 11 point cloud datasets

Backbones

- 2D: ResNet-50, pretrained with MoCoV2
- 3D: MinkUNet with cylinder voxels of size 0.1m as the input
- 2x A100 GPUs

Table 1: Comparisons of different pretraining methods pretrained on *nuScenes* [26] and fine-tuned on *nuScenes* [7], *SemanticKITTI* [3], *Waymo Open* [88], and *Synth4D* [82]. LP denotes linear probing with frozen backbones. Symbol † denotes fine-tuning with the LaserMix augmentation [55]. Symbol ‡ denotes fine-tuning with semi-supervised learning. All mIoU scores are given in percentage (%).

Method & Year	nuScenes						KITTI	Waymo	Synth4D
	LP	1%	5%	10%	25%	Full	1%	1%	1%
Random	8.10	30.30	47.84	56.15	65.48	74.66	39.50	39.41	20.22
PointContrast [ECCV'20] [103]	21.90	32.50	-	-	-	100	41.10	-	-
DepthContrast [ICCV'21] [116]	22.10	31.70	-	-	-	-	41.50	-	-
PPKT [arXiv'21] [65]	35.90	37.80	53.74	60.25	67.14	74.52	44.00	47.60	61.10
SLidR [CVPR'22] [85]	38.80	38.30	52.49	59.84	66.91	74.79	44.60	47.12	63.10
ST-SLidR [CVPR'23] [66]	40.48	40.75	54.69	60.75	67.70	75.14	44.72	44.93	_
Seal (Ours)	44.95	45.84	55.64	62.97	68.41	75.60	46.63	49.34	64.50
Seal [†] (Ours)	-	48.41	57.84	65.52	70.80	77.13	-	-	-
Seal [‡] (Ours)	-	49.53	58.64	66.78	72.31	78.28	-	-	-
Seal: Linear Probing

Table 2: Comparisons of different pretraining methods pretrained on *nuScenes* [26] and fine-tuned on different downstream point cloud datasets. All mIoU scores are given in percentage (%).

Method	ScribbleKITTI		RELLIS-3D		SemanticPOSS		SemanticSTF		SynLiDAR		DAPS-3D	
	1%	10%	1%	10%	Half	Full	Half	Full	1%	10%	Half	Full
Random	23.81	47.60	38.46	53.60	46.26	54.12	48.03	48.15	19.89	44.74	74.32	79.38
PPKT [65]	36.50	51.67	49.71	54.33	50.18	56.00	50.92	54.69	37.57	46.48	78.90	84.00
SLidR [85]	39.60	50.45	49.75	54.57	51.56	55.36	52.01	54.35	42.05	47.84	81.00	85.40
Seal (Ours)	40.64	52.77	51.09	55.03	53.26	56.89	53.46	55.36	43.58	49.26	81.88	85.90

ScribbleKITTI	RELLIS-3D	SemanticPOSS	SemanticSTF	DAPS-3D	SynLiDAR	Synth4D

Table 3: Robustness evaluations under eight out-of-distribution corruptions in the *nuScenes-C* dataset from the Robo3D benchmark [53]. All mCE, mRR, and mIoU scores are given in percentage (%).

0.2	Initial	Backbone	mCE↓	mRR ↑	Fog	Wet	Snow	Move	Beam	Cross	Echo	Sensor
	PPKT [65]	MinkUNet	183.44	78.15	30.65	35.42	28.12	29.21	32.82	19.52	28.01	20.71
2	SLidR [85]	MinkUNet	179.38	77.18	34.88	38.09	32.64	26.44	33.73	20.81	31.54	21.44
	Seal (Ours)	MinkUNet	166.18	75.38	37.33	42.77	29.93	37.73	40.32	20.31	37.73	24.94
	Random	PolarNet	115.09	76.34	58.23	69.91	64.82	44.60	61.91	40.77	53.64	42.01
	Random	CENet	112.79	76.04	67.01	69.87	61.64	58.31	49.97	60.89	53.31	24.78
	Random	WaffleIron	106.73	72.78	56.07	73.93	49.59	59.46	65.19	33.12	61.51	44.01
_	Random	Cylinder3D	105.56	78.08	61.42	71.02	58.40	56.02	64.15	45.36	59.97	43.03
Full	Random	SPVCNN	106.65	74.70	59.01	72.46	41.08	58.36	65.36	36.83	62.29	49.21
	Random	MinkUNet	112.20	72.57	62.96	70.65	55.48	51.71	62.01	31.56	59.64	39.41
	PPKT [65]	MinkUNet	105.64	76.06	64.01	72.18	59.08	57.17	63.88	36.34	60.59	39.57
	SLidR [85]	MinkUNet	106.08	75.99	65.41	72.31	56.01	56.07	62.87	41.94	61.16	38.90
	Seal (Ours)	MinkUNet	92.63	83.08	72.66	74.31	66.22	66.14	65.96	57.44	59.87	39.85

L. Kong, et al. Robo3D: Towards robust and reliable 3D perception under corruptions, ICCV, 2023.

Comparative Study: Qualitative Assessment

Table 4: Ablation study on pretraining frameworks (ours *vs.* SLidR [85]) and the knowledge transfer effects from different vision foundation models. All mIoU scores are given in percentage (%).

Mathad	Supermised	8		nuSo	KITTI	Waymo	Synth4D			
Method	Superpixer	LP	1%	5%	10%	25%	Full	1%	1%	1%
Random	-	8.10	30.30	47.84	56.15	65.48	74.66	39.50	39.41	20.22
	SLIC [1]	38.80	38.3 0	52.49	59.84	66.91	74.79	44.60	47.12	63.10
SLidR	SAM [50]	41.49	43.67	55.97	61.74	68.85	75.40	43.35	48.64	63.15
	X-Decoder [122]	41.71	43.02	54.24	61.32	67.35	75.11	45.70	48.73	63.21
	OpenSeeD [111]	42.61	43.82	54.17	61.03	67.30	74.85	45.88	48.64	63.31
	SEEM [123]	43.00	44.02	53.03	60.84	67.38	75.21	45.72	48.75	63.13
Seal	SLIC [1]	40.89	39.77	53.33	61.58	67.78	75.32	45.75	47.74	63.37
	SAM [50]	43.94	45.09	56.95	62.35	69.08	75.92	46.53	49.00	63.76
	X-Decoder [122]	42.64	44.31	55.18	62.03	68.24	75.56	46.02	49.11	64.21
	OpenSeeD [111]	44.67	44.74	55.13	62.36	69.00	75.64	46.13	48.98	64.29
	SEEM [123]	44.95	45.84	55.64	62.97	68.41	75.60	46.63	49.34	64.50

Ablation Study: Cosine Similarity

Ablation Study: Convergence Speed

The convergence rate comparison between SLidR and the proposed Seal framework

Table 5: Ablation study of each component pretrained on *nuScenes* [26] and fine-tuned on *nuScenes* [26], *SemanticKITTI* [3], and *Waymo Open* [88]. C2L: Camera-to-LiDAR distillation. VFM: Vision foundation models. STC: Superpoint temporal consistency. P2S: Point-to-segment regularization.

#	C2L	VFM	STC	Dac	nuScenes							Waymo
π			510	P25	LP	1%	5%	10%	25%	Full	1%	1%
(1)	\checkmark				38.80	38.30	52.49	59.84	66.91	74.79	44.60	47.12
(2)	~		~		40.45	41.62	54.67	60.48	67.61	75.30	45.38	48.08
(3)	\checkmark	\checkmark			43.00	44.02	53.03	60.84	67.38	75.21	45.72	48.75
(4)	\checkmark	\checkmark	\checkmark		44.01	44.78	55.36	61.99	67.70	75.00	46.49	49.15
(5)	\checkmark	~		\checkmark	43.35	44.25	53.69	61.11	67.42	75.44	46.07	48.82
(6)	\checkmark	\checkmark	\checkmark	\checkmark	44.95	45.84	55.64	62.97	68.41	75.60	46.63	49.34

Open-Source Resources

https://github.com/youquanl/Segment-Any-Point-Cloud