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3D Scene Understanding

Dai, et al. ScanNet V2. [CVPR 2017] Behley, et al. SemanticKITTI. [ICCV 2019]

Indoor Outdoor



Main Features

• Autonomous driving perception

• Larger in scale (>120k points per scan)

• Sparser, more diverse

• Rich semantic categories

• Different sensor setups (32, 64, 128)

• Real-world distribution

• Standard benchmarks: nuScenes,
SemanticKITTI, Waymo Open, etc.

3D Scene Understanding

Behley, et al. SemanticKITTI. [ICCV 2019]

Outdoor



• is
an open-source toolbox 
based on PyTorch

• is
the next-generation 
platform for general 3D 
object detection

• As well as [NEW] 3D
Semantic Segmentation

The MMDetection3D Codebase: https://github.com/open-mmlab/mmdetection3d

MMDetection3D

https://github.com/open-mmlab/mmdetection3d


Zhu, et al. Cylinder3D. [CVPR 2021]

Zhang, et al. PMF. [ICCV 2021]

Milioto, et al. RangeNet++. [IROS 2019]

Zhang, et al. PolarNet. [CVPR 2020]

MMDetection3D v1.1.1



Zhu, et al. Cylinder3D++. [TPAMI 2022]

Tang, et al. SPVCNN. [ECCV 2020]

Kong, et al. LaserMix. [CVPR 2023]

MMDetection3D v1.1.1

The MMDetection3D Codebase: https://github.com/open-mmlab/mmdetection3d

https://github.com/open-mmlab/mmdetection3d
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MMDetection3D v1.1.1

The MMDetection3D Codebase: https://github.com/open-mmlab/mmdetection3d

https://github.com/open-mmlab/mmdetection3d


Major Features

• Supports different
sparse convolution
backends

• Supports most
recent 3D
augmentation
techniques

• Achieves SoTA
3D semantic
segmentation
performance

MMDetection3D v1.1.1

The MMDetection3D Codebase: https://github.com/open-mmlab/mmdetection3d

https://github.com/open-mmlab/mmdetection3d
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LaserMix for Semi-Supervised
LiDAR Semantic Segmentation

Lingdong Kong1,2,3 Jiawei Ren1 Liang Pan1 Ziwei Liu1

1 S-Lab, Nanyang Technological University
2 National University of Singapore

3 CNRS@CREATE



Autonomous Driving Perception

From left to right:
• LiDAR semantic segmentation
• LiDAR panoptic segmentation
• 3D object detection
• 4D LiDAR panoptic segmentation

Why LiDAR sensors?
• Accurate depth sensing
• Robust at low-light conditions
• Dense perceptions
• …



LiDAR Semantic Segmentation

A. Milioto, et al. RangeNet++: Fast and accurate LiDAR semantic segmentation, IROS, 2019.



Fully-Supervised LiDAR Semantic Segmentation

• SemanticKITTI

• Full labels (100%)
• 19 semantic classes
• 100 m x 100 m
• Up to 4.5 hours

J. Behley, et al. SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences, ICCV, 2019.



Weakly-Supervised LiDAR Semantic Segmentation

• SemanticKITTI

• Full labels (100%)
• 19 semantic classes
• 100 m x 100 m
• Up to 4.5 hours

O. Unal, et al. Scribble-supervised LiDAR semantic segmentation, CVPR, 2022.

• ScribbleKITTI

• Weak (scribble) labels
(8.06%)

• 19 semantic classes
• 100 m x 100 m
• 10 - 25 min per scan
• 90% time saving



Semi-Supervised LiDAR Segmentation

• We target on the less-explored semi-
supervised LiDAR semantic segmentation

Objective (This Work)
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• We target on the less-explored semi-
supervised LiDAR semantic segmentation

• Our goal is to leverage the abundant raw
LiDAR scans for training accurate
segmentation models

• We propose LaserMix to make advantages
of the spatial prior in LiDAR scenes for
effective learning with semi supervisions

Objective (This Work)

Semi-Supervised LiDAR Segmentation



TL;DR

• Leverages the spatial prior in driving scenes
for data-efficient learning

LaserMix is a data-efficient learning framework designed for LiDAR segmentation that:
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TL;DR

• Leverages the spatial prior in driving scenes
for data-efficient learning

• Constructs low-variational areas via laser
beam mixing

• Encourages the model to make confident
and consistent predictions before and after
mixing

• Achieved competitive results over full 
supervision counterparts with 2x to 5x 
fewer annotations

LaserMix is a data-efficient learning framework designed for LiDAR segmentation that:



What is Spatial Prior ?

Certain semantic class tends to appear at certain areas around the ego-vehicle!



LaserMix: Overview

(a)Motivation. Semantic scene priors are overt for each category in LiDAR point clouds.
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LaserMix: Overview



(a)Motivation. Semantic scene priors are overt for each category in LiDAR point clouds.

(b)Generalizability. LaserMix can be added into various popular LiDAR representations.

(c) Effectiveness. LaserMix helps to improve both semi- and fully-supervised settings.

LaserMix: Overview
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LaserMix: Laser Partition & Mixing

1. Partitioning the captured LiDAR scan 
into low-variational areas

2. Efficiently mixing every area in the 
LiDAR scan with foreign data

3. Encouraging the LiDAR segmentation 
models to make confident and 
consistent predictions on the same 
area in different mixing

Three-Step Procedure



• Inclination:

𝜙! = arctan(
𝑝!"

(𝑝!#)$+(𝑝!
%)$

)

• Depth: 𝜌! = (𝑝!#)$+(𝑝!
%)$

• Azimuth: 𝛼! = arctan(
𝑝!
%

𝑝!#
)

LaserMix: Laser Partition & Mixing



LaserMix: Consistency Regularization



Proof & Derivation (See Our Paper)

LiDAR data and labels strongly correlate with the area 𝐴

𝐻 𝑋&', 𝑌&' 𝐴  is low

𝐻 𝑋&', 𝑌&' 𝐴 = Outer	Rings

A Simplified Case:
Color correlates with the row; each row has two colors

𝐻(𝑋, 𝑌|𝐴 ∈ {2×2}) 	= 	log 4

𝐻 𝑋, 𝑌 𝐴 ∈ 2×1, 2×1 = log 2

𝐻 𝑋, 𝑌 𝐴 ∈ 1×2, 1×2 = log 4



Experimental Settings

High-res LiDAR:
• SemanticKITTI
• Denser scenes

Low-res LiDAR:
• nuScenes
• Sparser scenes

Weak supervision:
• ScribbleKITTI
• Sparse labels



• Range View
• Backbone: FIDNet [IROS’21]
• # Param: 6.05M
• 6 x 32 x 1920 (nuScenes)
• 6 x 64 x 2048 (SemanticKITTI/ScribbleKITTI)

• Voxel
• Backbone: Cylinder3D [CVPR’21]
• # Param: 28.13M
• [240, 180, 20]

• Data Split
• 1%, 10%, 20%, 50% (labeled)
• Random sampling
• Assume the remaining ones are unlabeled

Y. Zhao, et al. FIDNet: LiDAR point cloud semantic segmentation with fully interpolation decoding, IROS, 2021.

X. Zhu, et al. Cylindrical and asymmetrical 3D convolution networks for LiDAR segmentation, CVPR, 2021.

Experimental Settings



A. Tarvainen and H. Valpola. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep 

learning results, NeurIPS, 2017.

G. French, et al. Semi-supervised semantic segmentation needs strong, high-dimensional perturbations, BMVC, 2020.

Y. Zou, et al. Domain adaptation for semantic segmentation via class-balanced self-training, ECCV, 2018.

X. Chen, et al. Semi-supervised semantic segmentation with cross pseudo supervision, CVPR, 2021.

Comparative Study



Comparative Study

Also contains spatial priors in scenes!

Y. Ouali, et al. Semi-supervised semantic segmentation with cross-consistency training, CVPR, 2020.

Z. Ke, et al. Guided collaborative training for pixel-wise semi-supervised learning, ECCV, 2020.



(1) Results of MeanTeacher.

(2) Results of LaserMix w/ student supervisions; much better than the counterpart.

(3) Results of LaserMix w/ teacher supervisions; much better than the counterpart.

Ablation Study



A. Nekrasov, et al. Mix3D: Out-of-context data augmentation for 3D scenes, 3DV, 2021.

S. Yun, et al. Cutmix: Regularization strategy to train strong classifiers with localizable features, ICCV, 2019

T. DeVries and G. W. Taylor. Improved regularization of convolutional neural networks with cutout, arXiv, 2017

H. Zhang, et al. Mixup: Beyond empirical risk minimization, ICLR, 2018.

(a) Comparisons among different mixing techniques.

Ablation Study



A. Nekrasov, et al. Mix3D: Out-of-context data augmentation for 3D scenes, 3DV, 2021.

S. Yun, et al. Cutmix: Regularization strategy to train strong classifiers with localizable features, ICCV, 2019

T. DeVries and G. W. Taylor. Improved regularization of convolutional neural networks with cutout, arXiv, 2017

H. Zhang, et al. Mixup: Beyond empirical risk minimization, ICLR, 2018.

(a) Comparisons among different mixing techniques. (b) EMA. (c) Confidence threshold.

Ablation Study



Ablation Study

• Inclination:
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Public Resources

• Paper: https://arxiv.org/abs/2207.00026

• Code: https://github.com/ldkong1205/LaserMix

• Project Page: https://ldkong.com/LaserMix

https://arxiv.org/abs/2207.00026
https://github.com/ldkong1205/LaserMix
https://ldkong.com/LaserMix


Topic

1. Overview & Background

2. Data-Efficient 3D Perception

3. Robustness in 3D

4. Segment Any Point Cloud Sequences



Robo3D: Towards Robust and Reliable 3D
Perception against Corruptions

Lingdong Kong1,2,*, Youquan Liu1,3,*, Xin Li1,4,*, Runnan Chen1,5, Wenwei Zhang1,6

Jiawei Ren6, Liang Pan6, Kai Chen1, Ziwei Liu6

1Shanghai AI Lab 2NUS 3Hochschule Bremerhaven 4ECNU 5HKU 6S-Lab, NTU



Complex Driving Environment

Image credit: https://zod.zenseact.com

https://zod.zenseact.com/
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TL;DR

• We introduce Robo3D, the first systematically-designed 
robustness evaluation suite for LiDAR-based 3D perception 
under corruptions and sensor failures

• We benchmarked 34 perception models for LiDAR-based 
semantic segmentation and object detection tasks, on their 
robustness against corruptions

• Based on our observations, we draw in-depth discussions 
on the receipt of designing more robust and reliable 3D
perception models



Robo3D: Taxonomy

*More examples at: https://ldkong.com/Robo3D

https://ldkong.com/Robo3D


3D Corruptions: Clean



3D Corruptions: Fog

M. Hahner, et al. Fog simulation on real LiDAR point clouds for 3D object detection in adverse weather, ICCV, 2021.

Fog Simulation

• The foggy weather mainly 
causes back-scattering and 
attenuation of LiDAR pulse 
transmissions

• This results in severe shifts of 
both range and intensity for 
the points in a LiDAR point 
cloud



3D Corruptions: Fog



3D Corruptions: Wet Ground

M. Hahner, et al. LiDAR snowfall simulation for robust 3D object detection, CVPR, 2022.

Wet Ground Simulation

• The emitted laser pulses from the 
LiDAR sensor tend to lose certain 
amounts of energy when hitting 
wet surface

• This cause significantly attenuated 
laser echoes depending on the 
water height and mirror 
refraction rate



3D Corruptions: Wet Ground



3D Corruptions: Snow

Snow Simulation

• For the laser beam in snowy weather, the set of 
particles in the air will intersect with it and derive 
the angle of the beam cross-section that is 
reflected by each particle, taking potential
occlusions into account

M. Hahner, et al. LiDAR snowfall simulation for robust 3D object detection, CVPR, 2022.



3D Corruptions: Snow



3D Corruptions: Motion Blur

S. P. Deschenes, et al. LiDAR scan registration robust to extreme motions, ICRV, 2021.

Motion Blur Simulation

• LiDAR is often mounted on the rooftop or side 
of the vehicle and inevitably suffers from the 
blur caused by vehicle movement, especially on 
bumpy surfaces or during U-turning



3D Corruptions: Motion Blur



3D Corruptions: Beam Missing

T. G. Phillips, et al. When the dust settles: The four behaviors of LIDAR in the presence of fine airborne particulates, JFR, 2017.

Beam Missing Simulation

• The dust and insect tend to form agglomerates in 
front of the LiDAR surface and will not likely 
disappear without human intervention, such as 
drying and cleaning

• This type of occlusion causes zero readings on 
masked areas and results in the loss of certain light 
impulses



3D Corruptions: Beam Missing



3D Corruptions: Crosstalk

A. L. Diehm, et al. Mitigation of crosstalk effects in multi-LiDAR configurations, Electro-Optical Remote Sensing XII, 2018.

Crosstalk Simulation

• The time-of-flight of light impulses from one sensor on a vehicle might interfere with impulses from 
other sensors from other vehicles within a similar frequency range

• Such a crosstalk phenomenon often creates noisy points within the mid-range areas in between two 
(or multiple) sensors



3D Corruptions: Crosstalk



3D Corruptions: Incomplete Echo

K. Yu, et al. Benchmarking the robustness of LiDAR-camera fusion for 3D object detection, arXiv, 2022.

Incomplete Echo Simulation

• The near-infrared spectrum of the laser pulse emitted from the LiDAR sensor is vulnerable to 
vehicles or other instances with dark colors. The LiDAR readings are thus incomplete in such 
scan echoes, resulting in significant point miss detection



3D Corruptions: Incomplete Echo



3D Corruptions: Cross-Sensor

Y. Wei, et al. LiDAR distillation: Bridging the beam-induced domain gap for 3D object detection, ECCV, 2022.

Cross-Sensor Simulation

• Due to the large variety of LiDAR sensor 
configurations (beam number, FOV, and 
sampling frequency), it is important to 
design robust 3D perception models that 
are capable of maintaining satisfactory 
performance under cross-device cases

• While previous works directly form such 
settings with two different datasets, the 
domain idiosyncrasy in between (e.g., 
different label mappings and data 
collection protocols) further hinders the 
direct robustness comparison



3D Corruptions: Cross-Sensor



Robo3D: Statistics

Corruption Types

• Include 8 corruption types, each with 3 severity levels (Easy, Moderate, and Hard)

Datasets (6 different collections)

• LiDAR Semantic Segmentation: 1SemanticKITTI-C, 2nuScenes-C (Seg3D), 3WOD-C (Seg3D)

• 3D Object Detection: 4KITTI-C, 5nuScenes-C (Det3D), 6WOD-C (Det3D)

Model & Algorithm (34 perception models)

• LiDAR Semantic Segmentation: 22 segmentors

• 3D Object Detection: 12 detectors

• Data Augmentation: 3 augmentation techniques



Robo3D: Representations

M. Uecker, et al. Analyzing deep learning representations of point clouds for real-time in-vehicle LiDAR perception, arXiv, 2022.

Representation

• 2D: range view, birds eye view

• 3D: cubic voxel, cylinder voxel

Operator

• 3D: Conv3d, SparseConv, etc.

• 2D: Conv2d, Linear, etc.

• 1D: Conv1d, Linear, etc.



Robo3D: Metrics

Task-Specific Accuracy (Acc)

• LiDAR Semantic Segmentation: mean IoU (mIoU)

• 3D Object Detection: mean AP (mAP), nuScenes Detection Score (NDS)

Robustness Metrics

• Mean Corruption Error (mCE)

• Mean Resilience Rate (mRR)



Robo3D: Benchmark Results

*More results and analysis at: https://github.com/ldkong1205/Robo3D

https://github.com/ldkong1205/Robo3D


Robo3D: Key Observations

1. Existing 3D detectors and segmentors are vulnerable to real-world corruptions

2. Models trained with LiDAR data from different sources (sensor setups) exhibit inconsistent 
sensitivities to each corruption type

3. Representing the LiDAR data as raw points, sparse voxel, or the fusion of them tend to yield 
better robustness



Robo3D: Key Observations

4. The 3D detectors and segmentors show different sensitivities to corruption scenarios

5. The recent out-of-context augmentation techniques improve 3D robustness by large margins; 
the flexible rasterization strategies help learn more robust features



Robo3D: Qualitative Assessments
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Robo3D: Robustness Enhancement

Motivation

• The natural corruptions often cause severe occlusion, attenuation, and reflection of light impulses, 
resulting in the unavoidable loss of LiDAR points in certain regions around the ego-vehicle

• For example, the wet ground absorbs energy and loses points on the surfaces; the potential incomplete 
echo and beam missing caused by reflection or dust/insect occlusion may lead to serious object failure



Density-Insensitive Training

• Completion loss:

• Confirmation loss:

Robo3D: Robustness Enhancement



Open-Source Resources

https://github.com/ldkong1205/Robo3D
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Segment Any Point Cloud
Sequences by Distilling Vision

Foundation Models
Youquan Liu1,*, Lingdong Kong1,2,*, Jun Cen1,3, Runnan Chen1,4

Wenwei Zhang1,5, Liang Pan5, Kai Chen1, Ziwei Liu5

1Shanghai AI Lab 2NUS 3HKUST 4HKU 5S-Lab, NTU



Visual Perception System

H. Caesar, et al. nuScenes: A multimodal dataset for autonomous driving, CVPR, 2020.



Autonomous Driving Perception System

H. Caesar, et al. nuScenes: A multimodal dataset for autonomous driving, CVPR, 2020.



Segment Anything

A. Kirillov, et al. Segment anything, ICCV, 2023. 

• Training Set: SA-1B, over 1B masks on 11M images

• Model: ViT-H SAM model

• Demo: https://segment-anything.com/demo

https://segment-anything.com/demo


Segment Anything

A. Kirillov, et al. Segment anything, ICCV, 2023. 



X-Decoder

X. Zou, et al. Generalized decoding for pixel, image, and language, CVPR, 2023.



SEEM

X. Zou, et al. Segment everything everywhere all at once, NeurIPS, 2023.



Segment Any RGB-D

J. Cen, et al. SAD: Segment any RGBD, NeurIPS Workshop, 2023.



SAM3D

Y. Yang, et al. SAM3D: Segment anything in 3D scenes, arXiv, 2023.



TL;DR

• Seal is a versatile self-supervised learning framework 
capable of segmenting any automotive point clouds

Seal
segment any
point cloud
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TL;DR

• Seal is a versatile self-supervised learning framework 
capable of segmenting any automotive point clouds

• Seal leverages off-the-shelf knowledge from vision 
foundation models (VFMs) and encouraging spatial and 
temporal consistency from such knowledge during the 
representation learning stage

• Seal enables knowledge transfer in an off-the-shelf manner 
to downstream tasks involving diverse point clouds, 
including those from real/synthetic, low/high-resolution, 
large/small-scale, and clean/corrupted datasets

Seal
segment any
point cloud



Seal: Challenges & Motivations

Challenges

• Camera views ≠ LiDAR views

• Automotive point clouds have unique label mappings

• LiDAR and cameras are not perfectly synchronized



Seal: Challenges & Motivations

Challenges

• Camera views ≠ LiDAR views

• Automotive point clouds have unique label mappings

• LiDAR and cameras are not perfectly synchronized

We hope to have a framework that …

• Conducts self-supervised learning on automotive
point clouds

• Enforces spatial and temporal consistency during
representation learning

• Can be generalizable to diverse downstream tasks



Superpixels

R. Achanta, et al. SLIC superpixels compared to state-of-the-art superpixel methods, TPAMI, 2012.

What is Superpixel

• Grouped pixels of perceptually 
meaningful atomic regions, which can 
be used to replace the rigid structure 
of the pixel grid



Superpixels

R. Achanta, et al. SLIC superpixels compared to state-of-the-art superpixel methods, TPAMI, 2012.

What is Superpixel

• Grouped pixels of perceptually 
meaningful atomic regions, which can 
be used to replace the rigid structure 
of the pixel grid

Key Features of Superpixel

• Captures image redundancy

• Provides a convenient primitive from 
which to compute image features

• Greatly reduces the complexity of 
subsequent image processing tasks



SLidR: Superpixel-Driven LiDAR Representation

C. Sautier, et al. Image-to-LiDAR self-supervised distillation for autonomous driving data, CVPR, 2022.



SLidR: Superpixel-Driven LiDAR Representation

C. Sautier, et al. Image-to-LiDAR self-supervised distillation for autonomous driving data, CVPR, 2022.



Semantic Superpixels

Camera View
(Front)

Superpixel
(SLIC)

Semantic Superpixel
(SAM)

Semantic Superpixel
(X-Decoder)

Semantic Superpixel
(OpenSeeD)

Semantic Superpixel
(SEEM)



Superpixel to Superpoint

LiDAR View
(Front)

Superpoint
(SLIC)

Semantic Superpoint
(SAM)

Camera View
(Front)

Superpixel
(SLIC)

Semantic Superpixel
(SAM)



Superpixel to Superpoint



Seal: Vision Foundation Models



Seal: Semantic Superpoints

Raw Point Cloud Semantic Superpoint Ground-Truth



Seal: Framework



Seal: Framework



Seal: Superpixels Statistics

SLIC
(80~140)

SAM
(5~250)

SEEM
(1~50)

X-Decoder
(1~20)

OpenSeeD
(1~40)



Seal: Framework



Seal: Spatial & Temporal Consistency

Spatial Consistency

• Cross-modality contrastive learning:

Temporal Consistency

• Superpoint temporal consistency:

• Point-to-segment regularization:



Seal: Experiments

Datasets

• Pretrained on nuScenes

• Linear probing with frozen backbone

• 20 downstream tasks on 11 point
cloud datasets

Backbones

• 2D: ResNet-50, pretrained with
MoCoV2

• 3D: MinkUNet with cylinder voxels
of size 0.1m as the input

• 2x A100 GPUs



Seal: Comparative Study



Seal: Linear Probing



Seal: Downstream Generalization



L. Kong, et al. Robo3D: Towards robust and reliable 3D perception under corruptions, ICCV, 2023.

Comparative Study: Robustness Probing



Comparative Study: Qualitative Assessment



Ablation Study: Frameworks



Ablation Study: Cosine Similarity



Ablation Study: Convergence Speed

The convergence rate comparison between SLidR and the proposed Seal framework



Ablation Study: Components



Seal
https://github.com/youquanl/Segment-Any-Point-Cloud

Open-Source Resources


