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【OpenMMLab 社区开放麦】是由 OpenMMLab 

发起，面向所有社区成员的社区分享直播活动，每周

四晚八点准点播出。旨在搭建一个知识分享的舞台，

在这里，社区里的每个人都能拿起话筒分享你的知识

和见解。我们一直认为，分享与交流能更好地促进知

识的传播；平等与共建能更好地维持社区的氛围。
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Visual Perception System

H. Caesar, et al. “nuScenes: A multimodal dataset for autonomous driving,” CVPR, 2020.



Visual Perception System

OpenCC: https://github.com/Charmve/OpenCC

Novel Class Novel Instance

https://github.com/Charmve/OpenCC
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Visual Perception System

H. Caesar, et al. “nuScenes: A multimodal dataset for autonomous driving,” CVPR, 2020.

• A single camera obviously cannot capture all 360 degrees around a vehicle

• Just by looking at this image and lacking any additional context, it is unclear to the onboard 
computer what this object is. It could be a barricade, a bus, a train - any number of things

• At this point, our system doesn’t have enough context to either classify the object or define 
the object’s boundaries – two essential perception tasks
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Visual Perception System

H. Caesar, et al. “nuScenes: A multimodal dataset for autonomous driving,” CVPR, 2020.

• With these three camera views, the vehicle’s perception network now has all the information 
and context needed to classify the object, as well as bound it properly

• Solution:

• Instead of relying solely on camera, seeking more modalities from other sensors

• RADAR, LiDAR, IMU, etc.



Autonomous Driving Perception System

H. Caesar, et al. “nuScenes: A multimodal dataset for autonomous driving,” CVPR, 2020.



2D Perception vs. 3D Perception

From left to right:
• LiDAR semantic segmentation
• LiDAR panoptic segmentation
• 3D object detection
• 4D panoptic segmentation

Why LiDAR sensors?
• Accurate depth sensing
• Robust at low-light conditions
• 3D positional information
• …

M. Aygun, et al. “4D panoptic LiDAR segmentation,” CVPR, 2021.



2D Perception vs. 3D Perception

Source: https://zod.zenseact.com

https://zod.zenseact.com/


2D Perception vs. 3D Perception

Hahner, et al. Fog. [ICCV 2021]

Hahner, et al. Snow. [CVPR 2022]Yu, et al. Incomplete Echo. [arXiv 2022]



Robust 3D Perception

L. Kong, et al. “Robo3D: Towards robust and reliable 3D perception against corruptions,” ICCV, 2023.



TL;DR
• We introduce Robo3D, the first systematically-

designed robustness evaluation suite for LiDAR-based
3D perception under corruptions and sensor failure

• We benchmark 34 perception models for LiDAR-based 
semantic segmentation and object detection tasks, 
on their robustness against corruptions.

• Based on our observations, we draw in-depth
discussions on the receipt of designing robust and
reliable 3D perception models.



Point Cloud Segmentation

Dai, et al. ScanNet V2. [CVPR 2017] Behley, et al. SemanticKITTI. [ICCV 2019]

Indoor Outdoor



Point Cloud Segmentation

OutdoorMain Features

• Autonomous driving perception

• Larger in scale (>120k points per scan)

• Sparser, more diverse

• Rich semantic categories

• Different sensor configurations (32, 64, 128)

• Real-world distribution

• Standard benchmarks: nuScenes,
SemanticKITTI, Waymo Open, etc. Behley, et al. SemanticKITTI. [ICCV 2019]



Point Cloud Representation

M. Uecker, et al. “Analyzing deep learning representations of point clouds for real-time in-vehicle LiDAR perception,” arXiv, 2022.

Representation:

• 2D: range view, bird’s eye view

• 3D: cubic voxel, cylinder voxel

Operator:

• 3D: Conv3d, SparseConv, etc.

• 2D: Conv2d, Linear, etc.

• 1D: Conv1d, Linear, etc.



Segmentation Model

Zhu, et al. Cylinder3D. [CVPR 2021]

Zhang, et al. PMF. [ICCV 2021]

Milioto, et al. RangeNet++. [IROS 2019]

Zhang, et al. PolarNet. [CVPR 2020]
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MMDetection3D

• is an open-source toolbox based on PyTorch, towards the next-
generation platform for general 3D detection and [NEW] 3D Semantic Segmentation.

The MMDetection3D Codebase: https://github.com/open-mmlab/mmdetection3d
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The MMDetection3D Codebase: https://github.com/open-mmlab/mmdetection3d



MMDetection3D v1.1.1

The MMDetection3D Codebase: https://github.com/open-mmlab/mmdetection3d

Zhu, et al. Cylinder3D. [CVPR 2021]

Tang, et al. SPVCNN. [ECCV 2020]

Kong, et al. LaserMix. [CVPR 2023]



MMDetection3D v1.1.1

The MMDetection3D Codebase: https://github.com/open-mmlab/mmdetection3d
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MMDetection3D v1.1.1

The MMDetection3D Codebase: https://github.com/open-mmlab/mmdetection3d

Major Features

• Supports different
sparse convolution
backends

• Supports most
recent 3D
augmentation
techniques

• Achieves SoTA
3D semantic
segmentation
performance
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Segment Anything

A. Kirillov, et al. ”Segment Anything,” arXiv, 2023. 

• Training Set: SA-1B, over 1B masks on 11M images

• Model: ViT-H SAM model

• Demo: https://segment-anything.com/demo

https://segment-anything.com/demo


Segment Anything

A. Kirillov, et al. ”Segment Anything,” arXiv, 2023. 



X-Decoder

X. Zou, et al. ”Generalized decoding for pixel, image, and language,” CVPR, 2023.



SEEM

X. Zou, et al. ”Segment everything everywhere all at once,” arXiv, 2023.



Fast-SAM

X. Zhao. “Fast segment anything,” arXiv, 2023.



Faster Segment Anything

X. Zhao. “Faster segment anything: Towards lightweight SAM for mobile applications,” arXiv, 2023.



Semantic-SAM

F. Li. “Semantic-SAM: Segment and recognize anything at any granularity,” arXiv, 2023.



DINO v2

M. Oquab, et al. ”DINOv2: Learning robust visual features without supervision,” arXiv, 2023.



Segment Any RGB-D

J. Cen, et al. ”SAD: Segment any RGBD,” arXiv, 2023.



SAM3D

Y. Yang, et al. ”SAM3D: Segment anything in 3D scenes,” arXiv, 2023.



CNS: Cross-Modality Noisy Supervision

R. Chen, et al. ”Towards label-free scene understanding by vision foundation models,” arXiv, 2023.
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TL;DR

• Seal is a versatile self-supervised learning framework 
capable of segmenting any automotive point clouds.

• Seal leverages off-the-shelf knowledge from vision 
foundation models (VFMs) and encouraging spatial 
and temporal consistency from such knowledge 
during the representation learning stage.

• Seal enables knowledge transfer in an off-the-shelf 
manner to downstream tasks involving diverse point 
clouds, including those from real/synthetic, low/high-
resolution, large/small-scale, and clean/corrupted 
datasets.

Seal
segment any
point cloud



Seal: Challenge & Motivation

Challenge

• Camera views ≠ LiDAR views

• Automotive point clouds have unique label
mappings

• LiDAR and cameras are not perfectly synchronized

We hope to have a framework that …

• Conducts self-supervised learning on automotive
point clouds

• Enforces spatial and temporal consistency during
representation learning

• Can be generalizable to diverse downstream tasks



Superpixel

R. Achanta, et al. ”SLIC superpixels compared to state-of-the-art superpixel methods,” TPAMI, 2012.

What is Superpixel

• Grouped pixels of perceptually 
meaningful atomic regions, which 
can be used to replace the rigid
structure of the pixel grid.

Key Features of Superpixel

• Captures image redundancy;

• Provides a convenient primitive from 
which to compute image features;

• Greatly reduces the complexity of 
subsequent image processing tasks.



SLidR: Superpixel-Driven LiDAR Representation

C. Sautier, et al. ”Image-to-LiDAR self-supervised distillation for autonomous driving data,” CVPR, 2022.



SLidR: Superpixel-Driven LiDAR Representation

C. Sautier, et al. ”Image-to-LiDAR self-supervised distillation for autonomous driving data,” CVPR, 2022.



Semantic Superpixel

Camera View
(Front)

Superpixel
(SLIC)

Semantic Superpixel
(SAM)

Semantic Superpixel
(X-Decoder)

Semantic Superpixel
(OpenSeeD)

Semantic Superpixel
(SEEM)



Superpixel to Superpoint

LiDAR View
(Front)

Superpoint
(SLIC)

Semantic Superpoint
(SAM)

Camera View
(Front)

Superpixel
(SLIC)

Semantic Superpixel
(SAM)



Superpixel to Superpoint



Seal: Vision Foundation Models
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Seal: Semantic Superpoint

Raw Point Cloud Semantic Superpoint Ground-Truth



Seal: Semantic Superpixel

SLIC
(80~140)

SAM
(5~250)

SEEM
(1~50)

X-Decoder
(1~20)

OpenSeeD
(1~40)



Seal: Vision Foundation Models



Seal: Framework



Seal: Spatial & Temporal Consistency

Spatial Consistency

• Cross-modality contrastive learning:

Temporal Consistency

• Superpoint temporal consistency:

• Point-to-segment regularization:



Seal: Experiments

Datasets

• Pretrained on nuScenes.

• Linear probing with frozen backbone.

• 20 downstream tasks on 11 point
cloud datasets.

Backbones

• 2D: ResNet-50, pretrained with
MoCoV2

• 3D: MinkUNet with cylinder voxels of
size 0.1m as the input

• 2x A100 GPUs.



Seal: Comparative Study



Seal: Linear Probing



Seal: Downstream Generalization



Seal: Robustness Probing

L. Kong, et al. ”Robo3D: Towards robust and reliable 3D perception under corruptions,” arXiv, 2023.



Seal: Qualitative Assessment



Seal: Ablation Study
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Seal: Ablation Study



Open-Source Resources

Seal



超级视客营第二期再度起航

活动交流群

10 个课题方向、150+ 课题任务

基础架构、目标检测、3D目标检测

预训练+多模态、AIGC、部署

姿态估计、语义分割、动作识别

https://openmmlab.com/activity/codecamp

HOT活动详情页



运用视觉基础模型分割「任意」点云

OpenMMLab 公众号
回复“社区开放麦”即可获取课件

Q & A

MMDetection3D 交流群
一起讨论技术流


