

运用视觉基础模型分割「任意」点云

孔令东 2023/07/20

【**OpenMMLab 社区开放麦**】是由 OpenMMLab 发起,面向所有社区成员的社区分享直播活动,每周 四晚八点准点播出。旨在搭建一个知识分享的舞台, 在这里,社区里的每个人都能拿起话筒分享你的知识 和见解。我们一直认为,分享与交流能更好地促进知 识的传播;平等与共建能更好地维持社区的氛围。

Segment Any Point Cloud Sequences by Distilling Vision Foundation Models

Youquan Liu^{1,*}, Lingdong Kong^{1,2,*}, Jun Cen^{1,3}, Runnan Chen^{1,4} Wenwei Zhang^{1,5}, Liang Pan⁵, Kai Chen¹, Ziwei Liu⁵ ¹Shanghai Al Lab²NUS³HKUST⁴HKU⁵S-Lab, NTU

Topic

1. Automotive Point Cloud Segmentation 自动驾驶场景中的点云分割

2. Point Cloud Segmentation with M Detection3D 高效点云分割工具箱

3. Introduction to Segment Anything 简介「分割一切」模型

4. Seal: Segmentation Any Point Cloud Sequences 运用视觉基础模型分割「任意」点云序列

Topic

1. Automotive Point Cloud Segmentation 自动驾驶场景中的点云分割

- 2. Point Cloud Segmentation with M Detection3D 高效点云分割工具箱
- **3. Introduction to Segment Anything** 简介「分割一切」模型
- 4. Seal: Segmentation Any Point Cloud Sequences 运用视觉基础模型分割「任意」点云序列

Novel Class

Novel Instance

OpenCC: https://github.com/Charmve/OpenCC

Here's a visual example of the **real-world challenges** autonomous driving perception systems face

Here's a visual example of the **real-world challenges** autonomous driving perception systems face

• A single camera obviously cannot capture all **360 degrees** around a vehicle

Here's a visual example of the **real-world challenges** autonomous driving perception systems face

- A single camera obviously cannot capture all **360 degrees** around a vehicle
- Just by looking at this image and lacking any additional context, it is **unclear** to the onboard computer what this object is. It could be a **barricade**, a **bus**, a **train** any number of things

- A single camera obviously cannot capture all **360 degrees** around a vehicle
- Just by looking at this image and lacking any additional context, it is **unclear** to the onboard computer what this object is. It could be a **barricade**, a **bus**, a **train** any number of things
- At this point, our system doesn't have enough context to either classify the object or define the object's boundaries – two essential perception tasks

• With these **three** camera views, the vehicle's perception network now has all the information and context needed to classify the object, as well as bound it properly

- With these **three** camera views, the vehicle's perception network now has all the information and context needed to classify the object, as well as bound it properly
- Solution:
 - Instead of relying solely on camera, seeking more modalities from other sensors
 - RADAR, LIDAR, IMU, etc.

Autonomous Driving Perception System

2D Perception vs. 3D Perception

From left to right:

- LiDAR semantic segmentation
- LiDAR panoptic segmentation
- 3D object detection
- 4D panoptic segmentation

M. Aygun, et al. "4D panoptic LiDAR segmentation," CVPR, 2021.

Why LiDAR sensors?

- Accurate depth sensing
- Robust at low-light conditions
- 3D positional information

• ..

2D Perception vs. 3D Perception

Source: <u>https://zod.zenseact.com</u>

2D Perception vs. 3D Perception

Hahner, et al. Fog. [ICCV 2021]

Yu, et al. Incomplete Echo. [arXiv 2022]

Hahner, et al. Snow. [CVPR 2022]

Robust 3D Perception

L. Kong, et al. "Robo3D: Towards robust and reliable 3D perception against corruptions," ICCV, 2023.

Robo3D

TL;DR

- We introduce Robo3D, the first systematicallydesigned robustness evaluation suite for LiDAR-based 3D perception under corruptions and sensor failure
- We benchmark 34 perception models for LiDAR-based **semantic segmentation** and **object detection** tasks, on their robustness against corruptions.
- Based on our observations, we draw in-depth discussions on the receipt of designing robust and reliable 3D perception models.

Point Cloud Segmentation

Indoor

Dai, et al. ScanNet V2. [CVPR 2017]

Outdoor

Behley, et al. SemanticKITTI. [ICCV 2019]

Point Cloud Segmentation

Main Features

- Autonomous driving perception
- Larger in scale (>120k points per scan)
- Sparser, more diverse
- Rich semantic categories
- Different sensor configurations (32, 64, 128)
- Real-world distribution
- Standard benchmarks: nuScenes, SemanticKITTI, Waymo Open, etc.

Outdoor

Behley, et al. SemanticKITTI. [ICCV 2019]

Point Cloud Representation

Representation:

- 2D: range view, bird's eye view
- **3D:** cubic voxel, cylinder voxel

Operator:

- **3D:** Conv3d, SparseConv, etc.
- 2D: Conv2d, Linear, etc.
- **1D:** Conv1d, Linear, etc.

M. Uecker, et al. "Analyzing deep learning representations of point clouds for real-time in-vehicle LiDAR perception," arXiv, 2022.

Segmentation Model

Milioto, et al. RangeNet++. [IROS 2019]

Zhu, et al. Cylinder3D. [CVPR 2021]

Zhang, et al. PolarNet. [CVPR 2020]

Zhang, et al. PMF. [ICCV 2021]

Topic

1. Automotive Point Cloud Segmentation 自动驾驶场景中的点云分割

2. Point Cloud Segmentation with M Detection3D 高效点云分割工具箱

 Introduction to Segment Anything 简介「分割一切」模型

4. Seal: Segmentation Any Point Cloud Sequences 运用视觉基础模型「分割一切点云序列」

MMDetection3D

• **Detection3D** is an open-source toolbox based on PyTorch, towards the nextgeneration platform for general 3D detection and **[NEW] 3D Semantic Segmentation**.

3D Object	Monocular 3D Object	Multi-modal 3D	3D Semantic
Detection	Detection	Object Detection	Segmentation
 Outdoor SECOND (Sensor'2018) PointPillars (CVPR'2019) SSN (ECCV'2020) 3DSSD (CVPR'2020) SA-SSD (CVPR'2020) SA-SSD (CVPR'2019) PointRCNN (CVPR'2019) Part-A2 (TPAMI'2020) 	 Outdoor ImVoxelNet (WACV'2022) SMOKE (CVPRW'2020) FCOS3D (ICCVW'2021) PGD (CoRL'2021) PGD (CoRL'2021) MonoFlex (CVPR'2021) Indoor ImVoxelNet (WACV'2022) 	 Outdoor MVXNet (ICRA'2019) Indoor ImVoteNet (CVPR'2020) 	 Outdoor MinkUNet (CVPR'2019) SPVCNN (ECCV'2020) Cylinder3D (CVPR'2021) Indoor PointNet++ (NeurIPS'2017) PAConv (CVPR'2021) DGCNN (TOG'2019)

MMDetection3D v1.1.1

Tang, et al. SPVCNN. [ECCV 2020]

 ϕ_1 p_1^z p_1^y Area 1 $p_1^x \quad \rho_1 = \sqrt{(p_1^x)^2 + (p_1^y)^2}$ Area 2 Area 3 $\phi_1 = \arctan(\frac{p_1^z}{c})$ Area 4

Kong, et al. LaserMix. [CVPR 2023]

MMDetection3D v1.1.1

MMDetection3D v1.1.1

Method	Backend	Lr schd	Amp	Laser- Polar Mix	Mem (GB)	Training Time (hours)	FPS	mloU	Download
MinkUNet18-W16	torchsparse	15e	\checkmark	×	3.4	-	-	60.3	model log
MinkUNet18-W20	torchsparse	15e	\checkmark	×	3.7	-	z_ 2	61.6	model log
MinkUNet18-W32	torchsparse	15e	\checkmark	×	4.9	-	-	63.1	model log
MinkUNet34-W32	minkowski engine	Зх	×	\checkmark	11.5	6.5	12.2	69.2	model log
MinkUNet34-W32	spconv	Зх	\checkmark	\checkmark	6.7	2	14.6*	68.3	model log
MinkUNet34-W32	spconv	Зх	×	\checkmark	10.5	6	14.5	69.3	model log
MinkUNet34-W32	torchsparse	Зх	\checkmark	\checkmark	6.6	3	12.8	69.3	model log
MinkUNet34-W32	torchsparse	Зx	×	\checkmark	11.8	5.5	15.9	68.7	model log
MinkUNet34v2- W32	torchsparse	Зx	\checkmark	\checkmark	8.9		-	70.3	model log

Major Features

- Supports different sparse convolution backends
- Supports most recent 3D augmentation techniques
- Achieves SoTA 3D semantic segmentation performance

Topic

1. Automotive Point Cloud Segmentation 自动驾驶场景中的点云分割

2. Point Cloud Segmentation with M Detection3D 高效点云分割工具箱

3. Introduction to Segment Anything 简介「分割一切」模型

4. Seal: Segmentation Any Point Cloud Sequences 运用视觉基础模型分割「任意」点云序列

Segment Anything

- Training Set: SA-1B, over 1B masks on 11M images
- Model: ViT-H SAM model
- Demo: https://segment-anything.com/demo

A. Kirillov, et al. "Segment Anything," arXiv, 2023.

Segment Anything

A. Kirillov, et al. "Segment Anything," arXiv, 2023.

X-Decoder

X. Zou, et al. "Generalized decoding for pixel, image, and language," CVPR, 2023.

X. Zou, et al. "Segment everything everywhere all at once," arXiv, 2023.

Fast-SAM

X. Zhao. "Fast segment anything," arXiv, 2023.

Faster Segment Anything

X. Zhao. "Faster segment anything: Towards lightweight SAM for mobile applications," arXiv, 2023.

Semantic-SAM

F. Li. "Semantic-SAM: Segment and recognize anything at any granularity," arXiv, 2023.

DINO v2

M. Oquab, et al. "DINOv2: Learning robust visual features without supervision," arXiv, 2023.

Segment Any RGB-D

J. Cen, et al. "SAD: Segment any RGBD," arXiv, 2023.

Y. Yang, et al. "SAM3D: Segment anything in 3D scenes," arXiv, 2023.

CNS: Cross-Modality Noisy Supervision

R. Chen, et al. "Towards label-free scene understanding by vision foundation models," arXiv, 2023.

Topic

1. Automotive Point Cloud Segmentation 自动驾驶场景中的点云分割

- 2. Point Cloud Segmentation with M Detection3D 高效点云分割工具箱
- **3. Introduction to Segment Anything** 简介「分割一切」模型
- **4. Seal: Segmentation Any Point Cloud Sequences** 运用视觉基础模型分割「任意」点云序列

TL;DR

- **Seal** is a versatile self-supervised learning framework capable of segmenting any automotive point clouds.
- Seal leverages off-the-shelf knowledge from vision foundation models (VFMs) and encouraging spatial and temporal consistency from such knowledge during the representation learning stage.
- Seal enables knowledge transfer in an off-the-shelf manner to downstream tasks involving diverse point clouds, including those from real/synthetic, low/high-resolution, large/small-scale, and clean/corrupted datasets.

Seal: Challenge & Motivation

Challenge

- Camera views ≠ LiDAR views
- Automotive point clouds have unique label mappings
- LiDAR and cameras are not perfectly synchronized

We hope to have a framework that ...

- Conducts self-supervised learning on automotive point clouds
- Enforces spatial and temporal consistency during representation learning
- Can be generalizable to diverse downstream tasks

Superpixel

What is Superpixel

 Grouped pixels of perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid.

Key Features of Superpixel

- Captures image redundancy;
- Provides a convenient primitive from which to compute image features;
- Greatly reduces the complexity of subsequent image processing tasks.

Fig. 1: Images segmented using SLIC into superpixels of size 64, 256, and 1024 pixels (approximately).

R. Achanta, et al. "SLIC superpixels compared to state-of-the-art superpixel methods," TPAMI, 2012.

SLidR: Superpixel-Driven LiDAR Representation

C. Sautier, et al. "Image-to-LiDAR self-supervised distillation for autonomous driving data," CVPR, 2022.

SLidR: Superpixel-Driven LiDAR Representation

C. Sautier, et al. "Image-to-LiDAR self-supervised distillation for autonomous driving data," CVPR, 2022.

Semantic Superpixel

Camera View (Front)

Superpixel (SLIC)

Semantic Superpixel (SAM)

Semantic Superpixel (X-Decoder)

Semantic Superpixel (OpenSeeD)

Semantic Superpixel (SEEM)

Superpixel to Superpoint

Camera View (Front)

Superpixel (SLIC)

Semantic Superpixel (SAM)

LiDAR View (Front)

Superpoint (SLIC)

Semantic Superpoint (SAM)

Superpixel to Superpoint

Seal: Uision Foundation Models

Seal: Framework

Seal: Framework

Seal: Semantic Superpoint

Raw Point Cloud

Semantic Superpoint

Ground-Truth

Seal: Semantic Superpixel

Seal: Uision Foundation Models

Seal: Framework

Seal: Spatial & Temporal Consistency

Spatial Consistency

• Cross-modality contrastive learning:

$$\mathcal{L}^{vfm} = \mathcal{L}\left(\mathbf{Q}, \mathbf{K}\right) = -\frac{1}{M} \sum_{i=0}^{M} \log \left[\frac{e^{\left(\langle \mathbf{q}_{i}, \mathbf{k}_{i} \rangle / \tau\right)}}{\sum_{j \neq i} e^{\left(\langle \mathbf{q}_{i}, \mathbf{k}_{j} \rangle / \tau\right)} + e^{\left(\langle \mathbf{q}_{i}, \mathbf{k}_{i} \rangle / \tau\right)}}\right]$$

Temporal Consistency

• Superpoint temporal consistency:

$$\mathcal{L}^{t \to t+1} = -\frac{1}{M_k} \sum_{i=0}^{M_k} \log \left[\frac{e^{\left(\left\langle \mathbf{f}_i^t, \mathbf{f}_i^{t+1} \right\rangle / \tau \right)}}{\sum_{j \neq i} e^{\left(\left\langle \mathbf{f}_i^t, \mathbf{f}_j^{t+1} \right\rangle / \tau \right)} + e^{\left(\left\langle \mathbf{f}_i^t, \mathbf{f}_i^{t+1} \right\rangle / \tau \right)}} \right]$$

• Point-to-segment regularization:

$$\mathcal{L}^{p2s} = -\frac{1}{M_k} \sum_{i=0}^{M_k} \log \left[\frac{e^{\left(\left\langle \mathbf{f}_i^t, \mathbf{c}_i^t \right\rangle / \tau \right)}}{\sum_{j \neq i} e^{\left(\left\langle \mathbf{f}_i^t, \mathbf{c}_j^t \right\rangle / \tau \right)} + e^{\left(\left\langle \mathbf{f}_i^t, \mathbf{c}_i^t \right\rangle / \tau \right)}} \right]$$

Figure 3: The positive feature correspondences in the contrastive learning objective in our contrastive learning framework. The *circles* and *triangles* represent the instance-level and the point-level features, respectively.

Seal: Experiments

Datasets

- Pretrained on nuScenes.
- Linear probing with frozen backbone.
- 20 downstream tasks on 11 point cloud datasets.

Backbones

- 2D: ResNet-50, pretrained with MoCoV2
- 3D: MinkUNet with cylinder voxels of size 0.1m as the input
- 2x A100 GPUs.

Table 1: Comparisons of different pretraining methods pretrained on *nuScenes* [26] and fine-tuned on *nuScenes* [7], *SemanticKITTI* [3], *Waymo Open* [88], and *Synth4D* [82]. LP denotes linear probing with frozen backbones. Symbol † denotes fine-tuning with the LaserMix augmentation [55]. Symbol ‡ denotes fine-tuning with semi-supervised learning. All mIoU scores are given in percentage (%).

Mathad & Vaan	nuScenes							Waymo	Synth4D
wiethou & rear	LP	1%	5%	10%	25%	Full	1%	1%	1%
Random	8.10	30.30	47.84	56.15	65.48	74.66	39.50	39.41	20.22
PointContrast [ECCV'20] [103]	21.90	32.50	-	-	-	-	41.10	-	-
DepthContrast [ICCV'21] [116]	22.10	31.70			_	_	41.50	12	2
PPKT [arXiv'21] [65]	35.90	37.80	53.74	60.25	67.14	74.52	44.00	47.60	61.10
SLidR [CVPR'22] [85]	38.80	38.30	52.49	59.84	66.91	74.79	44.60	47.12	63.10
ST-SLidR [CVPR'23] [66]	40.48	40.75	54.69	60.75	67.70	75.14	44.72	44.93	-
Seal (Ours)	44.95	45.84	55.64	62.97	68.41	75.60	46.63	49.34	64.50
Seal [†] (Ours)	-	48.41	57.84	65.52	70.80	77.13	12	12	12
Seal [‡] (Ours)	_ <	49.53	58.64	66.78	72.31	78.28	-	-	-

Seal: Linear Probing

Seal: Downstream Generalization

Table 2: Comparisons of different pretraining methods pretrained on *nuScenes* [26] and fine-tuned on different downstream point cloud datasets. All mIoU scores are given in percentage (%).

Mathad	ScribbleKITTI		RELLIS-3D		SemanticPOSS		SemanticSTF		SynLiDAR		DAPS-3D	
Method	1%	10%	1%	10%	Half	Full	Half	Full	1%	10%	Half	Full
Random	23.81	47.60	38.46	53.60	46.26	54.12	48.03	48.15	19.89	44.74	74.32	79.38
PPKT [65]	36.50	51.67	49.71	54.33	50.18	56.00	50.92	54.69	37.57	46.48	78.90	84.00
SLidR [85]	39.60	50.45	49.75	54.57	51.56	55.36	52.01	54.35	42.05	47.84	81.00	85.40
Seal (Ours)	40.64	52.77	51.09	55.03	53.26	56.89	53.46	55.36	43.58	49.26	81.88	85.90

Table 3: Robustness evaluations under eight out-of-distribution corruptions in the *nuScenes-C* dataset from the Robo3D benchmark [53]. All mCE, mRR, and mIoU scores are given in percentage (%).

	Initial	Backbone	mCE↓	mRR ↑	Fog	Wet	Snow	Move	Beam	Cross	Echo	Sensor
	PPKT [65]	MinkUNet	183.44	78.15	30.65	35.42	28.12	29.21	32.82	19.52	28.01	20.71
2	SLidR [85]	MinkUNet	179.38	77.18	34.88	38.09	32.64	26.44	33.73	20.81	31.54	21.44
	Seal (Ours)	MinkUNet	166.18	75.38	37.33	42.77	29.93	37.73	40.32	20.31	37.73	24.94
	Random	PolarNet	115.09	76.34	58.23	69.91	64.82	44.60	61.91	40.77	53.64	42.01
	Random	CENet	112.79	76.04	67.01	69.87	61.64	58.31	49.97	60.89	53.31	24.78
	Random	WaffleIron	106.73	72.78	56.07	73.93	49.59	59.46	65.19	33.12	61.51	44.01
	Random	Cylinder3D	105.56	78.08	61.42	71.02	58.40	56.02	64.15	45.36	59.97	43.03
Ţ,	Random	SPVCNN	106.65	74.70	59.01	72.46	41.08	58.36	65.36	36.83	62.29	49.21
H	Random	MinkUNet	112.20	72.57	62.96	70.65	55.48	51.71	62.01	31.56	59.64	39.41
	PPKT [65]	MinkUNet	105.64	76.06	64.01	72.18	59.08	57.17	63.88	36.34	60.59	39.57
	SLidR [85]	MinkUNet	106.08	75.99	65.41	72.31	56.01	56.07	62.87	41.94	61.16	38.90
	Seal (Ours)	MinkUNet	92.63	83.08	72.66	74.31	66.22	66.14	65.96	57.44	59.87	39.85

L. Kong, et al. "Robo3D: Towards robust and reliable 3D perception under corruptions," arXiv, 2023.

Seal: Qualitative Assessment

Table 4: Ablation study on pretraining frameworks (ours *vs.* SLidR [85]) and the knowledge transfer effects from different vision foundation models. All mIoU scores are given in percentage (%).

Mathad	Supermised	nuScenes						KITTI	Waymo	Synth4D
Method	Superpixer	LP	1%	5%	10%	25%	Full	1%	1%	1%
Random	-	8.10	30.30	47.84	56.15	65.48	74.66	39.50	39.41	20.22
	SLIC [1]	38.80	38.30	52.49	59.84	66.91	74.79	44.60	47.12	63.10
	SAM [50]	41.49	43.67	55.97	61.74	68.85	75.40	43.35	48.64	63.15
SLidR	X-Decoder [122]	41.71	43.02	54.24	61.32	67.35	75.11	45.70	48.73	63.21
	OpenSeeD [111]	42.61	43.82	54.17	61.03	67.30	74.85	45.88	48.64	63.31
8	SEEM [123]	43.00	44.02	53.03	60.84	67.38	75.21	45.72	48.75	63.13
	SLIC [1]	40.89	39.77	53.33	61.58	67.78	75.32	45.75	47.74	63.37
	SAM [50]	43.94	45.09	56.95	62.35	69.08	75.92	46.53	49.00	63.76
Seal	X-Decoder [122]	42.64	44.31	55.18	62.03	68.24	75.56	46.02	49.11	64.21
	OpenSeeD [111]	44.67	44.74	55.13	62.36	69.00	75.64	46.13	48.98	64.29
	SEEM [123]	44.95	45.84	55.64	62.97	68.41	75.60	46.63	49.34	64.50

Seal: Ablation Study

Figure 10: The convergence rate comparison between SLidR [85] and the proposed Seal framework.

Table 5: Ablation study of each component pretrained on *nuScenes* [26] and fine-tuned on *nuScenes* [26], *SemanticKITTI* [3], and *Waymo Open* [88]. C2L: Camera-to-LiDAR distillation. VFM: Vision foundation models. STC: Superpoint temporal consistency. P2S: Point-to-segment regularization.

#	COL	VEN	STC	Dag	nuScenes							Waymo
#	CZL	V FIVI	510	P25	LP	1%	5%	10%	25%	Full	1%	1%
(1)	\checkmark				38.80	38.30	52.49	59.84	66.91	74.79	44.60	47.12
(2)	\checkmark		\checkmark	9	40.45	41.62	54.67	60.48	67.61	75.30	45.38	48.08
(3)	\checkmark	\checkmark			43.00	44.02	53.03	60.84	67.38	75.21	45.72	48.75
(4)	\checkmark	\checkmark	\checkmark		44.01	44.78	55.36	61.99	67.70	75.00	46.49	49.15
(5)	\checkmark	\checkmark		\checkmark	43.35	44.25	53.69	61.11	67.42	75.44	46.07	48.82
(6)	\checkmark	\checkmark	\checkmark	\checkmark	44.95	45.84	55.64	62.97	68.41	75.60	46.63	49.34

Open-Source Resources

超级视客营第二期 再度起航

> 中級 为 Visualizer 添加 opencv 渲染后端

10 个课题方向、150+课题任务 基础架构、目标检测、3D目标检测 预训练+多模态、AIGC、部署 姿态估计、语义分割、动作识别

活动交流群

发者,	共建开源框势	₩					
]	* *	任务i	羊情	• •		
	初级难度 MMEngine MMEngine 是- 实的工程基础, 在不同研究领域	中级 MMDetection -个基于 PyTorch 实 以此避免在工作流上 支持了上百个算法。	难度 MMDetec 现的,用于训练 编写冗余代码。 此外,MMEng	高级X stion3D	住反 MMPreTrain 型的基础库。它为开 MLab 所有代码库 于非 OpenMMLab	DIY 任务 MMagic 发人员提供了坚 的训练引擎,其 项目中。	
	MMDeploy 任务详情	MMPose	MMSegme	entation	MMAction2 预计完成时间	合作课题积分	
		MEngine 空間於測灯:	名的训练用例		2周	40	

2周

面向全球开

立即报行

超级视客营

Q & A

OpenMMLab 公众号 回复"社区开放麦"即可获取课件

MMDetection3D 交流群 一起讨论技术流